# University of California, Berkeley <br> Department of Mechanical Engineering <br> ME 104, Fall 2013 

Midterm Exam 1 (2 October 2013)

1. (20 points) (a) For a particle undergoing a rectilinear motion, the position, velocity, and acceleration vectors are given by

$$
\begin{equation*}
\mathbf{r}=x \mathbf{i}, \quad \mathbf{v}=\dot{x} \mathbf{i}=v \mathbf{i}, \quad \mathbf{a}=\ddot{x} \mathbf{i}=a \mathbf{i} . \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) . \tag{2}
\end{equation*}
$$

(b) Consider a particle $P$ of mass $m$ travelling in a horizontal plane. Let its velocity vector be

$$
\begin{equation*}
\mathbf{v}=\dot{\mathbf{r}}=\dot{x} \mathbf{i}+\dot{y} \mathbf{j}=v_{x} \mathbf{i}+v_{y} \mathbf{j} . \tag{3}
\end{equation*}
$$

Suppose that $v_{x}^{2}$ and $v_{y}^{2}$ are specified by

$$
\begin{equation*}
v_{x}^{2}=C_{1}-\frac{1}{2} k x^{2} \geq 0, \quad v_{y}^{2}=C_{2}-\frac{1}{2} k y^{2} \geq 0 \tag{4}
\end{equation*}
$$

where $k$ is a positive constant, and $C_{1}$ and $C_{2}$ are constants. Calculate $a_{x}$ and $a_{y}$.
(c) Show that the force acting on $P$ is centripetal.
(d) Obtain the differential equations for the $x$ and $y$ coordinates of $P$, and provide a simple solution of either one of them.
2. (30 points) Let $O A B C$ be a rigid plate which is rotating at constant angular velocity $\boldsymbol{\omega}=\omega \mathbf{k}$ around a vertical axis $O Z(\omega=\dot{\theta}=$ const. $)$. Introduce a corotational basis $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$ on the plate, as indicated in Fig. 1. Suppose that a rigid $\operatorname{rod} O A D$ is welded to the plate and that $M N$ is a rigid guide ( $O M N$ is a right angle.). Let $P$ be a pin of mass $m$ that can slide on the rod and inside the guide.


Figure 1: Problem 2

Figure 1.
(a) Write down the relationship between the corotational basis vectors $\mathbf{e}_{r}, \mathbf{e}_{\theta}$ and the fixed basis vectors $\mathbf{i}, \mathbf{j}$.
(b) Show that

$$
\begin{equation*}
\dot{\mathbf{e}}_{r}=\dot{\theta} \mathbf{e}_{\theta}=\boldsymbol{\omega} \times \mathbf{e}_{r}, \quad \dot{\mathbf{e}}_{\theta}=-\dot{\theta} \mathbf{e}_{r}=\boldsymbol{\omega} \times \mathbf{e}_{\theta} . \tag{5}
\end{equation*}
$$

(c) Express the velocity and acceleration of $P$ on both bases, given that $\dot{\theta}=$ const. Hence deduce that

$$
\begin{equation*}
\dot{r}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{r}, \quad r \dot{\theta}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{\theta} . \tag{6}
\end{equation*}
$$

(d) Suppose that at $\theta=30^{\circ}$,

$$
\begin{equation*}
r=0.05 \mathrm{~m}, \quad \dot{r}=0.2 \mathrm{~m} / \mathrm{s}, \quad \ddot{r}=-0.025 \mathrm{~m} / \mathrm{s}^{2} . \tag{7}
\end{equation*}
$$

(i) Calculate $\dot{\theta}$ and $\dot{y}$, and check that $\dot{y}^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}$.
(ii) Find $\ddot{y}$.
(iii) Calculate the magnitude of the total force $\mathbf{F}$ acting on $P$ if the mass of $P$ is $m=0.5$ kg.
(e) Let $\eta$ represent the distance along the diagonal $O B$ of the plate. Calculate the velocity distribution $\mathbf{v}(\eta)$ along $O B$ and sketch it.
(f) Also calculate the acceleration along the diagonal $O B$ and indicate its variation on a sketch ( $\dot{\theta}=$ const.).

