
1. Problem 1

(a) Assume x(t) = α1x1(t) + α2x2(t). Then

y(t) = x(t2)

= α1x1(t2) + α2x2(t2)

= α1y1(t) + α2y2(t)

So system is linear. Now assume x̂(t) = x(t− τ). Then

ŷ(t) = x̂(t2) = x(t2 − τ)

6= y(t− τ) = x((t− τ)2)

So system is time-varying.

(b) Assume x(t) = α1x1(t) + α2x2(t). Then

y(t) = x(3t)

= α1x1(3t) + α2x2(3t)

= α1y1(t) + α2y2(t)

So system is linear. Now assume x̂(t) = x(t− τ). Then

ŷ(t) = x̂(3t) = x(3t− τ)

6= y(t− τ) = x(3(t− τ)) = x(3t− 3τ)

So system is time-varying.

(c) Assume x(t) = α1x1(t) + α2x2(t). Then

y(t) = |x(t)|
= |α1x1(t) + α2x2(t)|
6= α1|x1(t)|+ α2|x2(t)|
= α1y1(t) + α2y2(t)

So system is non-linear. Now assume x̂(t) = x(t− τ). Then

ŷ(t) = |x̂(t)|
= |x(t− τ)| = y(t− τ)

So system is time-invariant.

2. Problem 2
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(a) Zero function

(b) Modified triangle function. Edges of triangle at −2/3 and 0.

(c) Modified triangle function. Edges of triangle at −1 and 1. Bias offset
of 3.

3. Problem 3

(a) There isn’t enough information to make a conclusion
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Neither input-output pair show behavior that would not be true for
an LTI system (e.g. no new frequency is introduced). However, two
pairs of input-output is not enough to conclude that a system is LTI.
For a system to be LTI, it must be true that for all possible input-
output it exhibits LTI system behavior, but we do not know what
the system will output for inputs other than the two given.

(b) The system is not LTI.

LTI system does not create new frequencies in the output that are
not present in the input. Since the output has different frequencies
than the input, the system cannot be LTI.

4. Problem 4

(a)

A0 =
1

T

∫
<T>

x(t)dt =
1

4

∫ 1

−1
1dt =

1

2

ω0 =
2π

T
=

2π

4
=
π

2

(b) Since x(t) is an even function, it will only have the cosine terms in
its Fourier series summation (since sines are odd), so all Bk’s are 0.

(c)

x(t) = A0 +

∞∑
k=1

Ak cos(kω0t) +

∞∑
k=1

Bk sin(kω0t)

y(t) = 2x(t− 1)

= 2A0 + 2

∞∑
k=1

Ak cos(kω0(t− 1)) + 2

∞∑
k=1

Bk sin(kω0(t− 1))

= 2A0 + 2

∞∑
k=1

Ak cos(kω0(t− 1)) (Since all Bk = 0)

= 2A0 +
∞∑
k=1

2Ak (cos(kω0t) cos(kω0) + sin(kω0t) sin(kω0))

= 2A0 +

∞∑
k=1

2Ak cos(kω0) cos(kω0t) +

∞∑
k=1

2Ak sin(kω0) sin(kω0t)

= C0 +

∞∑
k=1

Ck cos(kω0t) +

∞∑
k=1

Dk sin(kω0t)

→ C0 = 2A0, Ck = 2Ak cos(kω0), Dk = 2Ak sin(kω0)
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(d)

Kω0 < ωc

K <
ωc
ω0

K = bωc
ω0
c = b4π/3

π/2
c = b8

3
c = 2

(e) Only x(t).

x(t) will exhibit Gibbs ringing because it has jump discontinuities.

z(t), on the other hand, is the sum of a finite number of sinusoids.

5. Problem 5

(a) Let’s call the first input x1[n], the second input x2[n], and the third
input x3[n]. To find the output of the system when the input is
x3[n], let’s represent it as a linear combination of x2[n] and x1[n].
One possible such combination is x3[n] = 4x1[n] − 1

5x2[n]. By the
properties of linearity, we can then represent our output as the same
linear combination of y1[n] and y2[n]. That is, our output is just
y3[n] = 4y1[n]− 1

5y2[n]. This gives an output of

Another way to solve this problem involves frequency response. You
can observe that the inputs can also be written as x1[n] = ei0n and
x2[n] = −10eiπn, and the outputs can be written as y1[n] = 10ei0n

and y2[n] = −5eiπn. Since the system is LTI, this implies thatH(0) =

4



10 and H(π) = 0.5. Since the third output can be expressed as
x3[n] = 4+2eiπn, the output must be y3[n] = H(0)·4+H(π)·2eiπn =
40 + eiπn. This is the same solution plotted above.

(b) We are given that y[n] = a1x[n− 1] + a2x[n − 2]. Let’s use our two
input-output pairs to figure out a1 and a2. From the first input-
output pair, we see that a1 ·1 +a2 ·1 = 10. From the second pair, we
look at y[0] and see that 10a1 − 10a2 = −5. This defines a matrix:[

10
−5

]
=

[
1 1
10 −10

]
×
[
a1
a2

]
We can solve this either using substitution or by inverting the matrix.
Either way, the answer is that a1 = 4.75 and a2 = 5.25.

6. Problem 6: Ambulence Revisited

(a) We start by knowing that the time delay from the ambulence to the
listner, τ(t) is a function of t. We also have the formula distance =
rate∗ time, and time = distance/rate. Let vs be the speed of sound,
and D(t) be the distance from the ambulence to the listener as a
function of time.

y(t+ τ(t)) = x(t)

τ(t) =
D(t)

vs
=
vat+ d

vs

We will now plug in τ(t) and use u-substitution to solve for the
equation in the proper form.

x(t) = y(t+
d+ vat

vs
) = y(u)

u = t(1 +
va
vs

) +
d

vs

t =
u

1 + va
vs

− d

vs + va

y(u) = x(t) = x
( u

1 + va
vs

− d

vs + va

)
Finally, we go back to the original form of the problem and compare.

y(t) = x(
t

a
− b)

a = 1 +
va
vs

= 1.1

b =
d

vs + va
= 1
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(b) The system is not time invariant (it is time variant). Generally, time
scaling is TV, but I’ll prove it anyway.

y(t− τ) = x(
t− τ
a
− b)

x̂(t) = x(t− τ)

ŷ(t) = x̂(
t

a
− b) = x(

t

a
− b− τ)

y(t− τ) 6= ŷ(t)

A common explaination was that a change in frequency implies TV.
However, that is not always true. Here’s a counter example: y(t) =
(x(t))2.

(c) We have the time scaling factor, so we can simply apply this factor
to the frequency of x(t).

x(t) = cos(2π ∗ 106t)

ω = 2π ∗ 106

f =
ω

2π
= 106

If time is scaled by 1
a , period is multiplied by a, and frequency is

multiplied by 1
a .

fnew =
fold
a

=
10

11
∗ 106

This is called a doppler shift.

7. Problem 7
The period of x(2t) is T ′ = T/2. Therefore w′0 = 2w0. Solve for A′0:

A′0 =
1

T ′

∫ T ′

0

x(2t)dt

Let p = 2t, dp = 2dt. Plug in:

A′0 =
2

T

∫ T/2

0

x(2t)dt =
2

T

∫ T

0

x(p)
dp

2
=

1

T

∫ T

0

x(p)dp = A0

Use the same process for A′k and B′k

A′k =
2

T ′

∫ T ′

0

x(2t) cos (kw′0t)dt =
4

T

∫ T/2

0

x(2t) cos (k2w0t)dt

Substitute p = 2t:

4

T

∫ T

0

x(p) cos (k2w0
p

2
)
dp

2
=

2

T

∫ T

0

x(p) cos (kw0p)dp = Ak

The same process will show that B′k = Bk
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8. Problem 8

(a) A0 6= 0, Ak = 0, Bk = 0

Any constant function only has an A0 component. No sinusoidal
components implies both Ak and Bk are zero.

(b) A0 = 0, Ak = 0, Bk 6= 0

This square wave is odd and centered around zero. Any odd function
only contains terms of Bk not equal to zero.

(c) A0 = 0, Ak 6= 0, Bk 6= 0

This sinusoid has no DC offset, so A0 will be 0. But since it is neither
odd nor even, it will have terms Ak and Bk not equal to zero.

(d) A0 6= 0, Ak 6= 0, Bk = 0

The signal is strictly positive making A0 not equal to zero. There
is symmetry over the y-axis, making it even, and thus removing the
odd Bk terms.

(e) A0 = 0, Ak 6= 0, Bk 6= 0

This function has an average value of zero. Although it has some
repetitive structure, the signal is neither odd nor even, thus making
the Ak and Bk terms non-zero.

9. Problem 9
The input-output relation of continuous-time LTI system F is given as

y(t) = 0.5y(t− 1) + 0.3x(t)

(a) Determine F (ω) and then plot |F (ω)|.
By the definition of Frequency Response, if the input is:

x(t) = eiωt

then the corresponding output is:

y(t) = F (ω)eiωt

Also,

y(t− 1) = F (ω)eiω(t−1) = F (ω)eiω(−1)eiωt = e−iωF (ω)eiωt

Substituting these into the LCCDE, we get:

F (ω)eiωt = 0.5e−iωF (ω)eiωt + 0.3eiωt

By dividing both sides by eiωt and rearranging the terms, we arrive
at the following expression for F (ω):

F (ω) =
0.3

1− 0.5e−iω
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In order to plot |F (ω)|, take the maginitude of F (ω):

|F (ω)| = | 0.3

1− 0.5e−iω
| = |0.3|
|1− 0.5e−iω|

=
0.3

|1− 0.5e−iω|

Using Euler’s formula,

|F (ω)| = 0.3

|1− 0.5(cos(−ω) + i · sin(−ω))|
=

0.3

|1− 0.5cos(ω) + 0.5i · sin(ω)|
Using Pythagorean theorem,

|F (ω)| = 0.3√
(1− 0.5cos(ω))2 + (0.5sin(ω))2

=
0.3√

1− cos(ω) + 0.25cos2(ω) + 0.25sin2(ω))

which yields the following expression:

|F (ω)| = 0.3√
1.25− cos(ω)
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(b) If the input is x(t) = 5
√

2+ 5
3 cos(πt− 7π

12 ), determine the correspond-
ing output.
The expression, y(t) = F (ω)x(t) is only valid when x(t) is a linear
combination of complex exponentials. Expressing x(t) as a linear
combination of complex exponentials, we get:

x(t) = 5
√

2 +
5

3
cos(πt− 7π

12
) = 5

√
2ei0t +

5

3

ei(πt−
7π
12 )

2
+

5

3

ei−(πt−
7π
12 )

2

The corresponding output is:

y(t) = F (w)x(t) = H(w)(5
√

2ei0t +
5

3
· 1

2
ei(πt−

7π
12 ) +

5

3
· 1

2
ei−(πt−

7π
12 ))

y(t) = F (w)x(t) = F (0)5
√

2ei0t+F (π)
5

3
·1
2
ei(πt−

7π
12 )+F (−π)

5

3
·1
2
ei−(πt−

7π
12 )

Where

F (0) =
0.3

1− 0.5e−i0
=

0.3

1− 0.5
= 0.6

F (π) =
0.3

1− 0.5e−iπ
=

0.3

1− 0.5(−1)
= 0.2

F (−π) =
0.3

1− 0.5eiπ
=

0.3

1− 0.5(−1)
= 0.2
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Therefore,

y(t) = 0.6 · 5
√

2ei0t + 0.2 · 5

3
· 1

2
ei(πt−

7π
12 ) + 0.2 · 5

3
· 1

2
ei−(πt−

7π
12 )

y(t) = 3
√

2 +
1

3
cos(πt− 7π

12
)
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