#### EE 20N Fall 2013 Structure and Interpretation of Signals and Systems

# $Midterm\ 2$

- You have 1 hours and 30 minutes.
- The exam is closed book, closed notes except a one-page cheat sheet.
- Write your answers ON THE EXAM ITSELF.
- Note that the test is out of 108 points, meaning that you have a slack of 8 points and can still get a 100 on the test even if you drop 8 points!

| First name                                   |  |
|----------------------------------------------|--|
| Last name                                    |  |
| SID                                          |  |
| First and last name of student to your left  |  |
| First and last name of student to your right |  |

#### For staff use only:

| Q1. | Warm-up                               | /14  |
|-----|---------------------------------------|------|
| Q2. | I've Seen Better Phase                | /12  |
| Q3. | Proctor & Upsample                    | /14  |
| Q4. | Bob the Filter                        | /17  |
| Q5. | The Matrix: Evaluations               | /10  |
| Q6. | They Only Differ by a T               | /14  |
| Q7. | Periodicity Makes the World Go 'Round | /10  |
| Q8. | Extreme Makeover: Comb Edition        | /17  |
|     | Total                                 | /108 |
|     |                                       |      |

#### THIS PAGE IS INTENTIONALLY LEFT BLANK

## Q1. [14 pts] Warm-up

#### (a) [7 pts]

Below is a plot of  $|X_d(\omega)|$  where  $X_d(\omega)$  is the DTFT of x[n]. Bubble in all possible choices of x[n]. You must explain your answer to get credit.



 $\bigcirc \frac{1}{2}\delta[n-1] + \frac{1}{2}\delta[n+1] \quad \bigcirc \frac{1}{2}\delta[n-1] - \frac{1}{2}\delta[n+1] \quad \bigcirc \frac{1}{2}\delta[n+1] - \frac{1}{2}\delta[n-1] \quad \bigcirc \text{None of the given choices}$ 

(b) [7 pts] The unit-step response of a discrete time LTI system is

$$y_s[n] = u[n+1] - u[n-2].$$

Find and sketch the impulse response of the system.

### Q2. [12 pts] I've Seen Better Phase



Shown above is a discrete time system S with input x[n] and output y[n]. The LTI system T inside S is causal and has impulse response h[n].

Are the following statements true of false? Explain.

(a) [4 pts] S is causal.

(b) [4 pts] S is linear.

(c) [4 pts] S is time-invariant.

### Q3. [14 pts] Proctor & Upsample

Suppose

The DTFT  $X_d(\omega)$  of a discrete time sequence x[n] is shown below (assuming the phase,  $\angle X_d(\omega) = 0 \ \forall \omega$ ):



What is  $Y_d(\omega)$ , the DTFT of y[n], in terms of  $X_d(\omega)$ ? Find the expression and plot  $Y_d(\omega)$ .

### Q4. [17 pts] Bob the Filter

Let a discrete time, LTI system be given by the following LCCDE:

$$y[n] - y[n-1] + \frac{1}{4}y[n-2] = x[n].$$

(a) [5 pts] Draw a block diagram of the LTI system with x[n] as input and y[n] as output.

(b) [8 pts] Find the frequency response of the system and plot the magnitude response. What kind of filter does your system represent?

(c) [4 pts] For  $x[n] = (-1)^n$ , find y[n].

### Q5. [10 pts] The Matrix: Evaluations

The 4-point DFT of  $\underline{x} = \{a, b, c, d\}$  is  $\underline{X} = \{A, B, C, D\}$ .

(a) [5 pts] Write down the 4-point IDFT matrix that maps  $\underline{X}$  to  $\underline{x}$ . Use complex notation in rectangular coordinates of the form (r + is) for the entries.

(b) [5 pts] Suppose A = 0, B = 0, C = 1, D = 0. What are a, b, c, and d?

#### Q6. [14 pts] They Only Differ by a T



Given a discrete time sequence x[n] shown above (note x[n] is non-zero only for  $0 \le n \le 7$ ):

- $X_d(\omega)$  is the DTFT of x[n].
- Let Y[k] for k = 0, 1, ..., 7 represent the samples of  $X_d(\omega)|_{\omega = \frac{2\pi}{8}k}$
- Suppose  $\{y[n]\}_{n=0}^7$  is the 8-point IDFT of  $\{Y[k]\}_{k=0}^7$
- (a) [6 pts] Find and sketch y[n].

(b) [8 pts] Suppose Z[k] for k = 0, 1, ..., 15 represent the samples of  $X_d(\omega)|_{\omega=\frac{2\pi}{16}k}$ , and  $\{z[n]\}_{n=0}^{15}$  is the 16-point IDFT of  $\{Z[k]\}_{k=0}^{15}$ . Sketch z[n].

#### Q7. [10 pts] Periodicity Makes the World Go 'Round

One period of a periodic discrete time signal x[n] is given by  $\{1, -1\}$ . The signal is input to an LTI system having impulse response  $h[n] = \{1, 2, 3\}$  to produce the output y[n]. Is y[n] periodic? What is its period? Find y[n].

#### Q8. [17 pts] Extreme Makeover: Comb Edition

Consider the system  $H_3$ , produced by cascading two comb filters, as shown in the figure below.



System  $H_1$  has the LCCDE  $y[n] = \alpha_1 y[n-3] + x[n]$ . System  $H_2$  has the LCCDE  $y[n] = \alpha_2 y[n-6] + x[n]$ .

(a) [8 pts] The following are plots of  $|H_3(\omega)|$  with different values of  $\alpha_1$  and  $\alpha_2$ . Match the plots with the corresponding values for  $\alpha_1$  and  $\alpha_2$ .



**I.**  $\alpha_1 = 0.1, \alpha_2 = 0.1$  **II.**  $\alpha_1 = 0.1, \alpha_2 = 0.9$  **III.**  $\alpha_1 = 0.9, \alpha_2 = 0.1$  **IV.**  $\alpha_1 = 0.9, \alpha_2 = 0.9$ 

(b) [9 pts] If you sample the continuous-time signal:

 $x(t) = \cos(8000\pi t) + e^{-20000i\pi t} + \sin(16000\pi t) + 16$ 

with sampling frequency  $f_s = 24kHz$ , and input the sampled signal into the system  $H_3$ , with  $\alpha_1$  and  $\alpha_2$  such that  $|H_3(\omega)|$  is as shown in plot (d) in the previous part, what will be, approximately, the output signal? You need to show work to get credit.