- You have 1 hours and 30 minutes.
- The exam is closed book, closed notes except a one-page cheat sheet.
- Write your answers ON THE EXAM ITSELF.
- Note that the test is out of 108 points, meaning that you have a slack of 8 points and can still get a 100 on the test even if you drop 8 points!

First name	
Last name	
SID	
First and last name of student to your left	
First and last name of student to your right	

For staff use only:

Q1.	Warm-up	$/ 14$
Q2.	I've Seen Better Phase	$/ 12$
Q3.	Proctor \& Upsample	$/ 14$
Q4.	Bob the Filter	$/ 17$
Q5.	The Matrix: Evaluations	$/ 10$
Q6.	They Only Differ by a T	$/ 14$
Q7.	Periodicity Makes the World Go 'Round	$/ 10$
Q8.	Extreme Makeover: Comb Edition	$/ 17$
	Total	$/ 108$

Q1. [14 pts] Warm-up

(a) $[7 \mathrm{pts}]$

Below is a plot of $\left|X_{d}(\omega)\right|$ where $X_{d}(\omega)$ is the DTFT of $x[n]$. Bubble in all possible choices of $x[n]$. You must explain your answer to get credit.

$\bigcirc \frac{1}{2} \delta[n-1]+\frac{1}{2} \delta[n+1]$ \square $\frac{1}{2} \delta[n-1]-\frac{1}{2} \delta[n+1]$$\frac{1}{2} \delta[n+1]-\frac{1}{2} \delta[n-1]$ ONone of the given choices
(b) [7 pts] The unit-step response of a discrete time LTI system is

$$
y_{s}[n]=u[n+1]-u[n-2] .
$$

Find and sketch the impulse response of the system.

Q2. [12 pts] I've Seen Better Phase

Shown above is a discrete time system S with input $x[n]$ and output $y[n]$. The LTI system T inside S is causal and has impulse response $h[n]$.

Are the following statements true of false? Explain.
(a) $[4 \mathrm{pts}] S$ is causal.
(b) $[4 \mathrm{pts}] S$ is linear.
(c) $[4 \mathrm{pts}] S$ is time-invariant.

Q3. [14 pts] Proctor \& Upsample

The DTFT $X_{d}(\omega)$ of a discrete time sequence $x[n]$ is shown below (assuming the phase, $\angle X_{d}(\omega)=0 \forall \omega$):

Suppose

$$
y[n]= \begin{cases}x\left[\frac{n}{4}\right] & \text { if } n \text { is a multiple of } 4 \\ 0 & \text { otherwise }\end{cases}
$$

What is $Y_{d}(\omega)$, the DTFT of $y[n]$, in terms of $X_{d}(\omega)$? Find the expression and plot $Y_{d}(\omega)$.

Q4. [17 pts] Bob the Filter

Let a discrete time, LTI system be given by the following LCCDE:

$$
y[n]-y[n-1]+\frac{1}{4} y[n-2]=x[n]
$$

(a) [5 pts] Draw a block diagram of the LTI system with $x[n]$ as input and $y[n]$ as output.
(b) [8 pts] Find the frequency response of the system and plot the magnitude response. What kind of filter does your system represent?
(c) $[4 \mathrm{pts}]$ For $x[n]=(-1)^{n}$, find $y[n]$.

Q5. [10 pts] The Matrix: Evaluations

The 4-point DFT of $\underline{x}=\{a, b, c, d\}$ is $\underline{X}=\{A, B, C, D\}$.
(a) [5 pts] Write down the 4-point IDFT matrix that maps \underline{X} to \underline{x}. Use complex notation in rectangular coordinates of the form $(r+i s)$ for the entries.
(b) [5 pts] Suppose $A=0, B=0, C=1, D=0$. What are a, b, c, and d ?

Q6. [14 pts] They Only Differ by a T

Given a discrete time sequence $x[n]$ shown above (note $x[n]$ is non-zero only for $0 \leq n \leq 7$):

- $X_{d}(\omega)$ is the DTFT of $x[n]$.
- Let $Y[k]$ for $k=0,1, \ldots, 7$ represent the samples of $\left.X_{d}(\omega)\right|_{\omega=\frac{2 \pi}{8} k}$
- Suppose $\{y[n]\}_{n=0}^{7}$ is the 8 -point IDFT of $\{Y[k]\}_{k=0}^{7}$
(a) $[6 \mathrm{pts}]$ Find and sketch $y[n]$.
(b) [8 pts] Suppose $Z[k]$ for $k=0,1, \ldots, 15$ represent the samples of $\left.X_{d}(\omega)\right|_{\omega=\frac{2 \pi}{16} k}$, and $\{z[n]\}_{n=0}^{15}$ is the 16 -point IDFT of $\{Z[k]\}_{k=0}^{15}$. Sketch $z[n]$.

Q7. [10 pts] Periodicity Makes the World Go 'Round

One period of a periodic discrete time signal $x[n]$ is given by $\{1,-1\}$. The signal is input to an LTI system having impulse response $h[n]=\{1,2,3\}$ to produce the output $y[n]$. Is $y[n]$ periodic? What is its period? Find $y[n]$.

Q8. [17 pts] Extreme Makeover: Comb Edition

Consider the system H_{3}, produced by cascading two comb filters, as shown in the figure below.

System H_{1} has the LCCDE $y[n]=\alpha_{1} y[n-3]+x[n]$. System H_{2} has the LCCDE $y[n]=\alpha_{2} y[n-6]+x[n]$.
(a) [8 pts] The following are plots of $\left|H_{3}(\omega)\right|$ with different values of α_{1} and α_{2}. Match the plots with the corresponding values for α_{1} and α_{2}.

(a)

(c)

(b) \qquad

(d) \qquad
I. $\alpha_{1}=0.1, \alpha_{2}=0.1$
II. $\alpha_{1}=0.1, \alpha_{2}=0.9$
III. $\alpha_{1}=0.9, \alpha_{2}=0.1$
IV. $\alpha_{1}=0.9, \alpha_{2}=0.9$
(b) $[9 \mathrm{pts}]$ If you sample the continuous-time signal:

$$
x(t)=\cos (8000 \pi t)+e^{-20000 i \pi t}+\sin (16000 \pi t)+16
$$

with sampling frequency $f_{s}=24 k H z$, and input the sampled signal into the system H_{3}, with α_{1} and α_{2} such that $\left|H_{3}(\omega)\right|$ is as shown in plot (d) in the previous part, what will be, approximately, the output signal? You need to show work to get credit.

