- You have 1 hours and 30 minutes.
- The exam is closed book, closed notes except a one-page cheat sheet.
- Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
- Note that the exam is worth 107 points, which means that you can get a 100 on the exam even if you drop 7 points.

First name	
Last name	
SID	
First and last name of student to your left	
First and last name of student to your right	

For staff use only:

Q1.	Warmup	$/ 18$
Q2.	I Haven't Plot a Clue	$/ 15$
Q3.	A Brief Mystery of Time	$/ 8$
Q4.	A Tale of Two Series	$/ 17$
Q5.	To LTI or Not to LTI?	$/ 7$
Q6.	Ambulance Revisited	$/ 10$
Q7.	Calculation Does Not Imply Causation	$/ 10$
Q8.	Odd Job	$/ 10$
Q9.	What's a Frequency Response?	$/ 12$
Total		$/ 107$

Q1. [18 pts] Warmup

Are the following continuous-time real-valued systems linear or non-linear, and time-invariant or time-varying? You must give an explanation to get any credit even if you circle the correct answer.
(a) $[6 \mathrm{pts}] y(t)=x\left(t^{2}\right)$non-lineartime-varying
(b) $[6 \mathrm{pts}] y(t)=x(3 t)$
linearnon-lineartime-invarianttime-varying
(c) $[6 \mathrm{pts}] y(t)=|x(t)|$linearnon-lineartime-invarianttime-varying

Q2. [15 pts] I Haven't Plot a Clue

Plot $y(t)$ on a well-labeled graph where $x(t)$ is given by the graph below:

(a) $[5 \mathrm{pts}] y(t)=x\left(t^{2}\right)$
(b) $[5 \mathrm{pts}] y(t)=x(3 t)$
(c) [5 pts] $y(t)=3-x(t-1)$
a)

c)

b)

Q3. [8 pts] A Brief Mystery of Time

We want to know if a certain black box is a continuous-time LTI system. We make the following input-output pair observations, where the two input signals below are $x_{1}(t)$ and $x_{2}(t)$ respectively, producing the corresponding outputs $y_{1}(t)$ and $y_{2}(t)$. The x-axis is in units of time (sec.) and the y -axis in units of Volts.

(a) [4 pts] Which of the following is correct? You must give a short explanation of your answer (1-2 sentences) to get any credit even if you circle the correct answer.The system is LTIThe system is not LTIThere isn't enough information to make a conclusionI haven't studied well enough to answer this

(b) [4 pts] Now suppose that instead of observing the input-output pair $x_{2}(t), y_{2}(t)$ in Problem 3 a), you observe the input-output pair $\tilde{x_{2}}(t), \tilde{y_{2}}(t)$ shown above. Which of the following is now true? You must give a short explanation to get any credit even if you circle the correct answer.

The system is LTI
The system is not LTIThere isn't enough information to make a conclusionI haven't studied well enough to answer this

Q4. [17 pts] A Tale of Two Series

The periodic CT signal $x(t)$ shown below has a CTFS given by

$$
x(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} B_{k} \sin \left(k \omega_{0} t\right)
$$

and $y(t)$ has a CTFS expansion given by

$$
y(t)=C_{0}+\sum_{k=1}^{\infty} C_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} D_{k} \sin \left(k \omega_{0} t\right)
$$

The plots of $x(t)$ and $y(t)$ are shown below.

(a) $[2 \mathrm{pts}]$ Find A_{0} and ω_{0}
(b) [3 pts] Show that $B_{k}=0 \forall k$ without doing any integration
(c) [5 pts] Find C_{0}, C_{k}, D_{k} without doing any integration in terms of A_{0}, A_{k}, B_{k}, the Fourier series coefficients of $x(t)$.

Now $x(t)$ is passed through system H, and the resulting output is $z(t)$. The frequency response $H(\omega)$ and the Fourier series representation of $z(t)$ are given below where $\omega_{c}=\frac{4 \pi}{3}$ radians $/ \mathrm{sec}$.

$$
\begin{gathered}
H(\omega)= \begin{cases}1 & :|\omega|<\omega_{c} \\
0 & :|\omega| \geq \omega_{c}\end{cases} \\
z(t)=E_{0}+\sum_{k=1}^{K} E_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{K} F_{k} \sin \left(k \omega_{0} t\right)
\end{gathered}
$$

(d) $[4 \mathrm{pts}]$ What is the smallest finite value of K needed in the Fourier expansion of $z(t)$?
(e) [3 pts] Do the Fourier series representation of either $x(t)$ or $z(t)$ exhibit Gibbs ringing? You must give a short explanation for each signal to get any credit even if you circle the correct answer.Only $x(t)$ Only $z(t)$Both $x(t)$ and $z(t)$

Q5. [7 pts] To LTI or Not to LTI?

The following black box LTI system exhibits the following behavior for 3 input signals $x_{1}[n], x_{2}[n]$ and $x_{3}[n]$, and their respective outputs $y_{1}[n], y_{2}[n]$ and $y_{3}[n]$.

(a) $[3 \mathrm{pts}]$ Find $y_{3}[n]$ and plot it above.
(b) [4 pts] If the LTI system is $y[n]=a_{1} x[n-1]+a_{2} x[n-2]$, what are a_{1} and a_{2} ?

Q6. [10 pts] Ambulance Revisited

An ambulance is speeding away from you at a speed of $v_{a}=34$ meters/second. At $t=0$, the ambulance is $d=374$ meters away from you. Let $x(t)=\cos \left(2 \pi \times 10^{6} t\right)$ be the sound emitted by the ambulance, and $y(t)$ be the received signal. The relationship between $x(t)$ and $y(t)$ can be described as

$$
y(t)=x\left(\frac{t}{a}-b\right) .
$$

(a) $[5 \mathrm{pts}]$ Assuming the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, find a and b.
(b) [3 pts $]$ Is the system time-invariant? Why or why not?
(c) [2 pts] What is the frequency of the received signal? What do you call the shift in frequency between the signal emitted by the ambulance and the signal you receive?

Q7. [10 pts] Calculation Does Not Imply Causation

Let's assume we know the Fourier series coefficients for

$$
x(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t\right)+B_{k} \sin \left(k \omega_{0} t\right)
$$

Now let's assume we have a system $H\{x(t)\}$ which we pass $x(t)$ through. The output $H\{x(t)\}=y(t)=x(2 t)$.
Solve for the Fourier series coefficients for $y(t)$ in terms of the Fourier series coefficients of $x(t)$.

Q8. [10 pts] Odd Job

For each of the following $x(t)$, indicate which set of Fourier series coefficients (A_{0}, A_{k}, B_{k}) can be guaranteed to be zero for all values of k where A_{k} and B_{k} are in $x(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} B_{k} \sin \left(k \omega_{0} t\right)$. You must provide a short explanation to get any credit even if you circle the correct answer.
a)

c)

e)

b)

d)

a) $[2 \mathrm{pts}]$$A_{0}=0$$A_{k}=0$$B_{k}=0$ $A_{0} \neq 0$$A_{k} \neq 0$$B_{k} \neq 0$
(b) $[2 \mathrm{pts}]$
$A_{0}=0$
$A_{0} \neq 0$$A_{k}=0$$B_{k}=0$
$A_{k} \neq 0$$B_{k} \neq 0$
(c) $[2 \mathrm{pts}]$

$A_{k}=0$$B_{k}=0$$A_{k} \neq 0$$B_{k} \neq 0$
(d) $[2 \mathrm{pts}]$ $\square$$A_{k}=0$$B_{k}=0$ $A_{0} \neq 0$$A_{k} \neq 0$$B_{k} \neq 0$
(e) $[2 \mathrm{pts}]$ $\square$$A_{k}=0$$B_{k}=0$ $A_{k} \neq 0$$B_{k} \neq 0$

Q9. [12 pts] What's a Frequency Response?

The input-output relation of continuous-time LTI system F is given as

$$
y(t)=0.5 y(t-1)+0.3 x(t)
$$

(a) [6 pts] Determine $F(\omega)$ and then plot $|F(\omega)|$.

(b) [6 pts] If the input is $x(t)=5 \sqrt{2}+\frac{5}{3} \cos \left(\pi t-\frac{7 \pi}{12}\right)$, determing the corresponding output.

Useful Formulae

$$
\begin{gathered}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \\
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \\
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
\end{gathered}
$$

THE REST OF THIS PAGE IS INTENTIONALLY LEFT BLANK

