EE40 Midterm 1 Solutions

Fall 2013
Mitchell Kline

$$
\operatorname{par}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right):=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Problem 1 a

$$
\mathrm{V}_{\mathrm{OC}}:=\alpha \cdot \mathrm{V}_{\mathrm{X}} \quad \quad \mathrm{I}_{\mathrm{SC}}:=\beta \cdot \mathrm{V}_{\mathrm{X}} \quad \quad \mathrm{R}_{\mathrm{th}}:=\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}} \rightarrow \frac{\alpha}{\beta}
$$

The above parameters specify a Thevenin source with voltage source Voc and resistance Rth. We need to find an equivalent circuit that has voltage Vx rather than Voc on the left hand side. There are many possible solutions, but the simplest one is a voltage divider.

For a voltage divider with series resistance R1 and load R2, the Thevenin parameters are:

$$
\mathrm{V}_{\mathrm{OC}}:=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \cdot \mathrm{~V}_{\mathrm{x}} \quad \quad \mathrm{I}_{\mathrm{SC}}:=\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{R}_{1}}
$$

Equating these with the above, we can find α and β by inspection.

$$
\begin{aligned}
& \text { Given } \quad \alpha=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \beta=\frac{1}{\mathrm{R}_{1}} \\
& \text { Find }\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right) \text { simplify } \rightarrow\left[\begin{array}{c}
\frac{1}{\beta} \\
-\frac{\alpha}{\beta \cdot(\alpha-1)}
\end{array}\right]
\end{aligned}
$$

With three resistors in a T, R1, R2, R3

$$
\begin{aligned}
\mathrm{V}_{\mathrm{oc}}:=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \cdot \mathrm{~V}_{\mathrm{X}} \quad \mathrm{I}_{\mathrm{SC}}:=\frac{\frac{\operatorname{par}\left(\mathrm{R}_{2}, \mathrm{R}_{3}\right)}{\mathrm{R}_{1}+\operatorname{par}\left(\mathrm{R}_{2}, \mathrm{R}_{3}\right)} \cdot \mathrm{V}_{\mathrm{x}}}{\mathrm{R}_{3}} \operatorname{simplify} \rightarrow \frac{\mathrm{R}_{2} \cdot \mathrm{~V}_{\mathrm{X}}}{\mathrm{R}_{1} \cdot \mathrm{R}_{2}+\mathrm{R}_{1} \cdot \mathrm{R}_{3}+\mathrm{R}_{2} \cdot \mathrm{R}_{3}} \\
\text { Given } \quad \alpha=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \beta=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1} \cdot \mathrm{R}_{2}+\mathrm{R}_{1} \cdot \mathrm{R}_{3}+\mathrm{R}_{2} \cdot \mathrm{R}_{3}}
\end{aligned}
$$

$$
\text { Find }\left(R_{2}, R_{3}\right) \text { simplify } \rightarrow\binom{-\frac{R_{1} \cdot \alpha}{\alpha-1}}{\frac{\alpha}{\beta}-R_{1} \cdot \alpha}
$$

You're given full credit if you assumed $\alpha=1$ and used one resistor in series

$$
\mathrm{R}_{\mathrm{th}}:=\frac{\mathrm{V}_{\mathrm{x}}}{\beta \cdot \mathrm{~V}_{\mathrm{x}}} \rightarrow \frac{1}{\beta}
$$

Full credit is also given for a dependent source and series resistor.

$$
\mathrm{V}_{\mathrm{d}}:=\alpha \cdot \mathrm{V}_{\mathrm{x}} \quad \mathrm{R}_{\mathrm{th}}:=\frac{\alpha}{\beta}
$$

Problem 1 b

Let b be our reference voltage (ground). The open circuit voltage at node a is

$$
\mathrm{V}_{\mathrm{aoc}}:=\mathrm{V}_{1} \cdot \frac{\mathrm{R}_{6}}{\mathrm{R}_{5}+\mathrm{R}_{6}}
$$

The short circuit current obtained by grounding a is

$$
\mathrm{I}_{\mathrm{scab}}:=\frac{\mathrm{V}_{1}}{\mathrm{R}_{5}}
$$

Then

$$
\mathrm{R}_{\mathrm{thb}}:=\frac{\mathrm{V}_{\mathrm{aoc}}}{\mathrm{I}_{\text {scab }}} \rightarrow \frac{\mathrm{R}_{5} \cdot \mathrm{R}_{6}}{\mathrm{R}_{5}+\mathrm{R}_{6}} \quad \mathrm{~V}_{\text {thb }}:=\mathrm{V}_{\text {aoc }} \rightarrow \frac{\mathrm{R}_{6} \cdot \mathrm{~V}_{1}}{\mathrm{R}_{5}+\mathrm{R}_{6}}
$$

Problem 1 c

Ground the node in the middle. The open circuit voltage is

$$
\begin{gathered}
\mathrm{V}_{\text {aoc }}:=\mathrm{V}_{1} \cdot \frac{\mathrm{R}_{6}}{\mathrm{R}_{5}+\mathrm{R}_{6}} \quad \mathrm{~V}_{\mathrm{boc}}:=0 \\
\mathrm{~V}_{\text {aboc }}:=\mathrm{V}_{\text {aoc }}-\mathrm{V}_{\mathrm{boc}} \rightarrow \frac{\mathrm{R}_{6} \cdot \mathrm{~V}_{1}}{\mathrm{R}_{5}+\mathrm{R}_{6}}
\end{gathered}
$$

The short circuit current is

$$
I_{\text {scab }}:=\frac{V_{\text {thb }}}{R_{\text {thb }}+\frac{R_{3} \cdot\left(R_{1}+R_{2}\right)}{R_{3}+R_{1}+R_{2}}} \text { simplify } \rightarrow \frac{R_{6} \cdot V_{1}}{\left[\frac{R_{5} \cdot R_{6}}{R_{5}+R_{6}}+\frac{R_{3} \cdot\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+R_{3}}\right] \cdot\left(R_{5}+R_{6}\right)}
$$

where we used the Thevenin source from part b.

$$
\frac{V_{\text {aboc }}}{I_{\text {scab }}} \text { simplify } \rightarrow \frac{R_{5} \cdot R_{6}}{R_{5}+R_{6}}+\frac{R_{3} \cdot\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+R_{3}}
$$

The solution is more easily found by subsituting the result from part b directly into the circuit of part c . Then by inspection,

$$
\begin{aligned}
& \mathrm{V}_{\text {oc }}:=\mathrm{V}_{\text {thb }} \\
& \mathrm{R}_{\text {th }}:=\mathrm{R}_{\text {thb }}+\operatorname{par}\left(\mathrm{R}_{3}, \mathrm{R}_{1}+\mathrm{R}_{2}\right) \rightarrow \frac{\mathrm{R}_{5} \cdot \mathrm{R}_{6}}{\mathrm{R}_{5}+\mathrm{R}_{6}}+\frac{\mathrm{R}_{3} \cdot\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}
\end{aligned}
$$

Problem 2

First, choose a ground. Node 4 is convenient because it gets rid of the supernode.

$$
\begin{aligned}
& \frac{V_{1}-V_{x}}{R_{7}}+\frac{V_{1}-V_{3}}{R_{4}}+\frac{V_{1}-V_{2}}{R_{5}}=0 \\
& \frac{V_{2}-V_{1}}{R_{5}}-\alpha \cdot V_{o}-I_{A}=0 \\
& I_{A}-I_{B}+\frac{V_{3}-V_{1}}{R_{4}}=0 \\
& V_{0}=V_{1}-V_{3} \quad \text { substitute this into the second equation to get } \\
& \frac{V_{2}-V_{1}}{R_{5}}-\alpha \cdot\left(V_{1}-V_{3}\right)-I_{A}=0
\end{aligned}
$$

Rewriting the above:

$$
\begin{aligned}
& \mathrm{V}_{1} \cdot\left(\frac{1}{\mathrm{R}_{7}}+\frac{1}{\mathrm{R}_{4}}+\frac{1}{\mathrm{R}_{5}}\right)+\mathrm{V}_{2} \cdot\left(\frac{-1}{\mathrm{R}_{5}}\right)+\mathrm{V}_{3} \cdot\left(\frac{-1}{\mathrm{R}_{4}}\right)=\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{R}_{7}} \\
& \mathrm{~V}_{1} \cdot\left(\frac{-1}{\mathrm{R}_{5}}-\alpha\right)+\mathrm{V}_{2} \cdot\left(\frac{1}{\mathrm{R}_{5}}\right)+\mathrm{V}_{3} \cdot(\alpha)=\mathrm{I}_{A}
\end{aligned}
$$

$$
\mathrm{V}_{1} \cdot\left(\frac{-1}{\mathrm{R}_{4}}\right)+\mathrm{V}_{3} \cdot\left(\frac{1}{\mathrm{R}_{4}}\right)=\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{A}}
$$

Problem 3

First, redraw the circuit so there are no overlaps.
Let IR2 be the current flowing through R2 consistent with the direction of ly
KVL:

$$
\mathrm{I}_{\mathrm{R} 2} \cdot \mathrm{R}_{2}+\left(\mathrm{I}_{\mathrm{R} 2}-\mathrm{i}_{\mathrm{o}}\right) \cdot \mathrm{R}_{5}+\beta \cdot \mathrm{i}_{\mathrm{o}}+\left(\mathrm{I}_{\mathrm{R} 2}-\mathrm{I}_{\mathrm{y}}\right) \cdot \mathrm{R}_{6}=0
$$

KCL at bottom node:

$$
-\mathrm{I}_{\mathrm{x}}+\mathrm{i}_{\mathrm{o}}-\mathrm{I}_{\mathrm{y}}=0
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R} 2}\left(\mathrm{R}_{2}+\mathrm{R}_{5}+\mathrm{R}_{6}\right)+\mathrm{i}_{\mathrm{o}}\left(-\mathrm{R}_{5}+\beta\right)=\mathrm{I}_{\mathrm{y}} \cdot\left(\mathrm{R}_{6}\right) \\
& \mathrm{i}_{\mathrm{o}}=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}
\end{aligned}
$$

Note: depending on how you redrew the circuit and labeled the meshes, you may end up with several different forms of the above equations.

Problem 4 a

Define a ground. The bottom node is convenient.
Given

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{x}}}{1 \Omega}-1 \mathrm{~A}-1 \mathrm{~A}-\alpha \cdot \mathrm{V}_{\mathrm{R}}=0 \\
& \frac{\mathrm{~V}_{\mathrm{R}}}{1 \Omega}+1 \mathrm{~A}=0 \\
& \mathrm{~V}_{\mathrm{x}}=500 \mathrm{mV}
\end{aligned}
$$

$$
\left(\begin{array}{c}
\alpha \\
\mathrm{V}_{\mathrm{x}} \\
\mathrm{~V}_{\mathrm{R}}
\end{array}\right):=\operatorname{Find}\left(\alpha, \mathrm{V}_{\mathrm{X}}, \mathrm{~V}_{\mathrm{R}}\right) \rightarrow\left(\begin{array}{c}
-\frac{500 \cdot \mathrm{mV}-2 \cdot \mathrm{~A} \cdot \Omega}{\mathrm{~A} \cdot \Omega^{2}} \\
500 \cdot \mathrm{mV} \\
-\mathrm{A} \cdot \Omega
\end{array}\right)
$$

$$
\alpha \rightarrow-\frac{500 \cdot \mathrm{mV}-2 \cdot \mathrm{~A} \cdot \Omega}{\mathrm{~A} \cdot \Omega^{2}}=1.5 \cdot \mathrm{~S}
$$

