Physics 137B (Quantum Mechanics II) - Midterm Exam / October 15, 2013 / 9:40am - 11:00am
Please solve all three problems below, and please explain your answers.

Problem 1 [30pts]: Spin-orbit interaction

The spin-orbit interaction $H_{\text {so }}^{\prime}=\left(\frac{e^{2}}{8 \pi \epsilon_{0}}\right) \frac{1}{m^{2} c^{2} r^{3}} \vec{S} \cdot \vec{L}$ causes the degenerate $2 P$ level of the hydrogen atom (the level with principal quantum number $n=2$ and orbital
 quantum number $l=1$) to split into two levels: $2 P_{\frac{1}{2}}$ (with total angular momentum quantum number $j=\frac{1}{2}$) and $2 P_{\frac{3}{2}}$ (with total angular momentum quantum number $j=\frac{3}{2}$). They differ in energy by

$$
\Delta E=E\left(2 P_{\frac{3}{2}}\right)-E\left(2 P_{\frac{1}{2}}\right)=4.53 \times 10^{-5} \mathrm{eV}
$$

Hypothetically, if the electron had spin $s=1$ (instead of $s=\frac{1}{2}$), assuming the same form of H_{so}^{\prime}, into how many distinct levels would $2 P$ split, and what would be the energy differences between adjacent levels? (You can express your answers in terms of ΔE.)

Problem 2 [40pts]: Fermions and perturbation theory.

Two identical and non-interacting fermions of mass m are in an infinite square well potential in the range $-a<x<a$. We ignore the spin in this problem (assuming that both particles are in the same spin state).
(a) What is the energy of the ground state of the system?
(b) Write down the wavefunction $\psi\left(x_{1}, x_{2}\right)$ of the ground state of the system.
(c) A perturbation $H^{\prime}=\lambda x_{1} x_{2}$ is added to the Hamiltonian. Calculate the first order $O(\lambda)$ correction to the ground state energy.

You can use one or more of the formulas

$$
\begin{gathered}
\int_{-a}^{a} \cos ^{2}\left(\frac{\pi x}{2 a}\right) d x=\int_{-a}^{a} \sin ^{2}\left(\frac{\pi x}{a}\right) d x=a, \\
\int_{-a}^{a} x \cos \left(\frac{\pi x}{2 a}\right) \sin \left(\frac{\pi x}{a}\right) d x=\frac{32 a^{2}}{9 \pi^{2}}, \quad \int_{-a}^{a} x \sin ^{2}\left(\frac{\pi x}{a}\right) d x=\int_{-a}^{a} x \cos ^{2}\left(\frac{\pi x}{2 a}\right) d x=0, \\
\int_{-a}^{a} x^{2} \sin ^{2}\left(\frac{\pi x}{a}\right) d x=\frac{a^{3}}{3}-\frac{a^{3}}{2 \pi^{2}}, \quad \int_{-a}^{a} x^{2} \cos ^{2}\left(\frac{\pi x}{2 a}\right) d x=\frac{a^{3}}{3}-\frac{2 a^{3}}{\pi^{2}},
\end{gathered}
$$

(some formulas where added to hide the really needed one.)
Please turn the page

Problem 3 [30pts]: quick one-line answers.

Please answer the following questions and add to your answers one-line explanations.
(a) Two spin- $\frac{3}{2}$ particles are in a state $\left\lfloor\frac{3}{2}, \frac{3}{2}\right\rangle$ where both z-components of spin have eigenvalues $+\frac{3}{2} \hbar$. What would a measurement of the square of the total spin $\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}$ give?
(b) Two identical fermions have an orbital wavefunction

$$
\psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\pi b^{3}} e^{-\left(r_{1}+r_{2}\right) / b}
$$

Considering the following possibilities for their spin-part of the wavefunction:
(1) $|\uparrow \uparrow\rangle$;
(2) $|\uparrow \downarrow\rangle$;
(3) $|\downarrow \uparrow\rangle$;
(4) $|\downarrow \downarrow\rangle$;
pick one of the following choices:
(A) Exactly one answer from (1)-(4) is correct. [Which ones is it?];
(B) there is more than one correct answer (1)-(4). [Which ones are correct?];
(C) none of the answers (1)-(4) is correct.
(c) Taking into account fine-structure, one finds that the lowest 6 energy levels of the hydrogen atom are

$$
\begin{array}{lll}
E_{1}=-13.60587 \mathrm{eV}, & E_{2}=-3.401480 \mathrm{eV}, & E_{3}=-3.401434 \mathrm{eV} \\
E_{4}=-1.511763 \mathrm{eV}, & E_{5}=-1.511750 \mathrm{eV}, & E_{6}=-1.511746 \mathrm{eV}
\end{array}
$$

Write down the multiplicities (degeneracies) of each level. (Ignore the hyperfine splitting and the factor of 2 due to the spin of the proton.)
You may wish to recall the formula

$$
E_{n j}=-\frac{1}{2 n^{2}} m c^{2} \alpha^{2}+\frac{1}{n^{4}}\left(\frac{3}{4}-\frac{n}{j+\frac{1}{2}}\right) m c^{2} \alpha^{4}, \quad\left(\alpha \equiv \frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}=\frac{1}{137.035999173(35)}\right)
$$

Physics 137B (Quantum Mechanics)

Formulas for the midterm

Schrödinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi, \quad \hat{H}=\frac{1}{2 m} \hat{p}^{2}+V(x), \quad \hat{p}=\frac{\hbar}{i} \frac{d}{d x}
$$

Charged particle in a magnetic field

$$
\hat{H}=\frac{1}{2 m}\left(\frac{\hbar}{i} \vec{\nabla}-q \vec{A}\right)^{2}-\vec{\mu} \cdot \vec{B}, \quad \vec{B}=\vec{\nabla} \times \vec{A}, \quad \vec{\mu}=\frac{g q}{2 m} \vec{S},
$$

Infinite square well

$$
\begin{array}{lll}
\psi_{2 n+1}=\frac{1}{\sqrt{a}} \cos \left(\frac{\pi x}{2 a}\right), & E_{2 n+1}=\frac{\hbar^{2}(2 n+1)^{2}}{8 m a^{2}}, & (2 n+1)=1,3,5,7, \ldots \\
\psi_{2 n}=\frac{1}{\sqrt{a}} \sin \left(\frac{\pi x}{a}\right), & E_{2 n}=\frac{\hbar^{2}(2 n)^{2}}{8 m a^{2}}, & (2 n)=2,4,6,8, \ldots
\end{array} \quad V(x)= \begin{cases}0, & \text { if }|x|>a \\
\infty, & \text { if }-a<x<a\end{cases}
$$

Harmonic oscillator

$$
\begin{gathered}
\hat{H}=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2}=\hbar \omega\left(a_{+} a_{-}+\frac{1}{2}\right), \quad\left[a_{-}, a_{+}\right]=1, \quad \hat{a}_{ \pm}=\frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega \hat{x}), \\
\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}}, \quad \psi_{n}=\frac{1}{\sqrt{n!}}\left(a_{+}\right)^{n} \psi_{0}, \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
\end{gathered}
$$

Spherical harmonics

$$
\begin{gathered}
P_{l}(x)=\frac{1}{2^{l} l!}\left(\frac{d}{d x}\right)^{l}\left[\left(x^{2}-1\right)^{l}\right], \quad P_{l}^{m}(x)=\left(1-x^{2}\right)^{|m| / 2}\left(\frac{d}{d x}\right)^{|m|} P_{l}(x), \\
Y_{l m}(\theta, \phi)=\epsilon \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} i^{i m \phi} P_{l}^{m}(\cos \theta), \quad \epsilon= \begin{cases}(-1)^{m} & \text { for } m \geq 0 \\
1 & \text { for } m<0\end{cases} \\
Y_{0,0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1,0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta, \quad Y_{1, \pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{\mp i \phi}, \\
Y_{2,0}=\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right), \quad Y_{2, \pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta e^{\mp i \phi}, \quad Y_{2, \pm 2}=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{\mp 2 i \phi},
\end{gathered}
$$

Angular momentum

$$
\begin{gathered}
\hat{L}_{ \pm} \equiv L_{x} \pm i L_{y}= \pm \hbar e^{ \pm i \phi}\left(\frac{\partial}{\partial \theta} \pm i \cot \theta \frac{\partial}{\partial \phi}\right), \quad \hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \\
\hat{L}_{z}|l, m\rangle=\hbar m|l, m\rangle, \quad \hat{L}^{2}|l, m\rangle=\hbar^{2} l(l+1)|l, m\rangle, \quad \hat{L}_{ \pm}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m \pm 1)}|l, m \pm 1\rangle
\end{gathered}
$$

Pauli matrices

$$
\begin{aligned}
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \vec{S}=\frac{\hbar}{2} \vec{\sigma}, \\
\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\mathbf{I}, \quad\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, \quad\left[\sigma_{y}, \sigma_{z}\right]=2 i \sigma_{x}, \quad\left[\sigma_{z}, \sigma_{x}\right]=2 i \sigma_{y},
\end{aligned}
$$

Hydrogen-like Atom

$$
\begin{gathered}
\psi_{100}=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}, \quad a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}}=0.529 \times 10^{-10} \mathrm{~m}, \quad E_{1}=-\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}=-13.6 \mathrm{eV}, \quad E_{n}=\frac{E_{1}}{n^{2}} \\
\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \phi), \quad R_{10}=\frac{2}{\sqrt{a^{3}}} e^{-x}, \quad R_{20}=\frac{1}{\sqrt{2 a^{3}}}\left(1-\frac{1}{2} x\right) e^{-x / 2}, \quad R_{21}=\frac{1}{\sqrt{24 a^{3}}} x e^{-x / 2}, \quad x \equiv \frac{r}{a}
\end{gathered}
$$

Identical particles

$$
\psi\left(x_{1}, x_{2}\right)=\left\{\begin{array}{lll}
\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)-\psi_{2}\left(x_{1}\right) \psi_{1}\left(x_{2}\right)\right] & \text { noninteracting identical fermions } \\
\psi_{1}\left(x_{1}\right) \psi_{1}\left(x_{2}\right) & \text { or } & \frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)+\psi_{2}\left(x_{1}\right) \psi_{1}\left(x_{2}\right)\right] \\
\text { noninteracting identical bosons }
\end{array}\right.
$$

Time-independent perturbation theory

$$
E_{n}^{(1)}=\left\langle\psi_{n}^{(0)}\right| H^{\prime}\left|\psi_{n}^{(0)}\right\rangle, \quad \psi_{n}^{(1)}=\sum_{m \neq n} \frac{\left\langle\psi_{m}^{(0)}\right| H^{\prime}\left|\psi_{n}^{(0)}\right\rangle}{E_{n}^{(0)}-E_{m}^{(0)}} \psi_{m}^{(0)}, \quad E_{n}^{(2)}=\sum_{m \neq n} \frac{\left.\left|\left\langle\psi_{m}^{(0)}\right| H^{\prime}\right| \psi_{n}^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}} \psi_{m}^{(0)}
$$

Degenerate perturbation theory

$$
W_{i j} \equiv\left\langle\psi_{i}^{(0)}\right| H^{\prime}\left|\psi_{j}^{(0)}\right\rangle, \quad E_{ \pm}^{(1)}=\frac{1}{2}\left[W_{a a}+W_{b b} \pm \sqrt{\left(W_{a a}-W_{b b}\right)^{2}+4\left|W_{a b}\right|^{2}}\right]
$$

Fine structure

$$
\begin{gathered}
H^{\prime}=-\frac{\hat{p}^{4}}{8 m^{3} c^{2}}+\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right) \frac{1}{m^{2} c^{2} r^{3}} \vec{S} \cdot \vec{L}, \quad \vec{S} \cdot \vec{L}=\frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right), \quad \vec{J}=\vec{L}+\vec{S} . \\
E_{n j}=-\frac{\alpha^{2} m c^{2}}{2 n^{2}}\left[1+\frac{\alpha^{2}}{n^{2}}\left(\frac{n}{j+\frac{1}{2}}-\frac{3}{4}\right)\right], \quad \alpha \equiv \frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}=\frac{1}{137.035999173(35)}
\end{gathered}
$$

