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Question 1. (40 points) Choose the correct answer. You need not justify your answer. Correct answers
carry 2 points credit, incorrect answers carry 2 points penalty. You will not get a negative score on any
group of five questions.
When not specified, the sizes of matrices and vectors are such that the products and equalities make sense.

T F If A is an m× n matrix with m pivot columns, then the linear transformation x 7→ Ax is onto.

T F If A is an m× n matrix and if the equation Ax = b has at least two distinct solutions,

then for any c, the equation Ax = c has infinitely many solutions.

T F If A is a 2× 2 matrix with zero determinant, then one row of A is a multiple of the other.

T F If detA = 0 then Ak = 0 for some k.

T F If A is a 4× 4 matrix and B is produced from A by multiplying the columns of A by 4,

then detB = 4 · detA.

T F The non-pivot columns of a matrix are always linearly dependent.

T F If AB = 0 for two matrices A,B, then either A = 0 or B = 0.

T F Right-multiplying a matrix A by a diagonal matrix D with non-zero diagonal entries scales

the columns of A.

T F If A,B are square matrices that commute with each other, then (A+B)(A−B) = A2 −B2.

T F If AB = I and B is square, then A is invertible.

T F If dim Span(v1,v2, . . . ,v5) = 5 then the collection {v1,v2, . . . ,v5} cannot be linearly dependent.

T F If an m× n matrix A is row equivalent to an echelon matrix U with k non-zero rows, then

the dimension of the nullspace of A is n− k.

T F If a matrix has orthonormal columns, then it also has orthonormal rows.

T F If W is a subspace of Rn, then ‖v − projW (v)‖2 = ‖v‖2 − ‖projW (v)‖2.

T F If a matrix M has orthonormal columns, then MTM = I.

T F If the n× n matrix A is not diagonalizable, then there must exist a vector in Rn which is not

a linear combination of real eigenvectors of A.

T F If A is invertible and 2 is an eigenvalue of A, then 1
2 is an eigenvalue of A−1.

T F If the square matrix A contains two identical columns, then 0 is an eigenvalue of A.

T F If the matrix A is orthogonal, then the linear transformation x 7→ A · x preserves lengths and angles.

T F If A is a real symmetric n× n matrix, then there exist an orthogonal basis of A-eigenvectors for Rn.
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Question 2. (20 points, 12+4+4)
Construct the 4× 4 matrix implementing the orthogonal projection in R4 onto the column space of

A =


1 2
0 2
2 0
1 1

 .
Find the orthogonal projection p of the vector v = [1, 1, 1, 1]T onto Col(A), and check that AT (v− p) = 0.
Why does that have to be the case (independently of your computation)?
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Question 3. (20 points, 16+4)
Find the solution x(t) for the vector ODE

dx

dt
=

 −1 4 4
1 2 4
0 0 1

 · x
with initial condition x(0) = [0, 0, 1]T . Explain (and check) your steps.
What is limt→−∞ e−tx(t)?
(Note: NOT the limit as t→ +∞.)
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Question 4. (15 points)
Let A be a real symmetric matrix, λ 6= µ two distinct (real) eigenvalues, and v and w eigenvectors for λ and
µ respectively. Show that v ⊥ w.
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Question 5. (25 points, 10+15)

The 2π-periodic “jagged wave” function defined by j(x) =

{
x+ π/2, −π ≤ x ≤ 0

π/2− x, 0 ≤ x ≤ π
is graphed below:

(a) Show (explaining your steps) that j(x) has a 2π-periodic Fourier expansion

j(x) =
4

π

∞∑
n=0

cos((2n+ 1)x)

(2n+ 1)2
.

(b) Using Part (a) (or otherwise), write down a particular solution of the inhomogeneous wave equation

∂2u

∂t2
=
∂2u

∂x2
+ t2 · j(x)

with periodic boundary conditions: that is, u(x+ 2π, t) = u(x, t) for all x, t ∈ R.
Remarks: You are not required to write out the most general solution, or to match any particular initial
conditions at t = 0.
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THIS PAGE IS FOR ROUGH WORK (not graded unless you mark it otherwise)
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