Physics 112

Spring 2009

Midterm 2

$$
\text { (} 50 \text { minutes }=50 \text { points })
$$

Time yourself and move to the next problem after a number of minutes equal to the number of points.

1. Entropy ($\mathbf{1 0}$ points):

a) (5 points) Show from our general definition of the entropy (which applies both to isolated and non-isolated systems) that the entropy of a system in contact with a thermal bath at temperature τ, is

b) (5 points) Why is this not the logarithm of the total number of states?
The system is not isolated, and there/ree the states are not equiprob-lbe.

$$
\begin{gathered}
\text { Only when } \quad f_{3}=\frac{1}{g_{t}} \quad \forall s \quad\left(g_{t}=\frac{\text { ital number }}{\text { of states) }}\right.
\end{gathered}
$$

2. Paramagnetism and adiabatic demagnetization (20 points)

Let us consider a system of N_{s} distinguishable spin 1 sites in a magnetic field B at temperature τ. Each spin has magnetic moment m and its energy in the magnetic field is $\varepsilon_{+}=-\mathrm{mB}, \varepsilon_{0}=0$ and $\varepsilon_{-}=\mathrm{mB}$, depending whether it points along, perpendicular to or opposite to the magnetic field.
a) (5 points) Write down the partition function of each spin and probabilities of it pointing along, perpendicular to or opposite to the magnetic field.
b) (10 points) From the partition function of a single spin, deduce that the total entropy of the system is (at small mB / τ)

$$
\sigma_{s}=N_{s}\left(\log 3-\frac{m^{2} B^{2}}{3 \tau^{2}}\right)
$$

You may want to remember that for small ε,

$$
\begin{array}{ll}
\log (1+\varepsilon)-\varepsilon+O\left(\varepsilon^{2}\right), & \cosh (\varepsilon) \sim 1+\frac{\varepsilon^{2}}{2}+O\left(\varepsilon^{3}\right) \\
\frac{1}{1+\varepsilon} \sim 1-\varepsilon+O\left(\varepsilon^{2}\right), & \sinh (\varepsilon) \sim \varepsilon+O\left(\varepsilon^{2}\right)
\end{array}
$$

$$
\begin{aligned}
& \exp (\varepsilon)=1+\varepsilon+\frac{\varepsilon^{2}}{2}+O\left(\varepsilon^{3}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { sion } n=\text { bleml }{ }^{\prime} \text { for spin } 2 \\
\sigma_{1}=\frac{\partial\left(\tau \log z_{1}\right.}{\partial \tau}=\log z_{1}+\tau \partial \log z_{1}
\end{array} \\
& \sigma_{1}=\frac{\partial\left(\tau \log z_{1}\right)}{\partial \tau}=\log z_{1}+\tau \frac{\partial \log z_{1}}{\partial \tau} \\
& \begin{aligned}
\left.\log _{1}\right)^{\prime} & =\log Z_{1}+\tau \frac{\partial \log Z_{1}}{\partial \tau} \\
\tau & =\log \left(1+e^{m B}+e^{-\frac{m B}{\tau}}\right)+\frac{-m B e^{\frac{m B}{\tau}}+\frac{m B}{\tau} e^{-m B}}{1+e^{m \frac{m}{\tau}}+e^{-m B}} \\
& =\frac{\left.1(m B)^{3}\right]}{}
\end{aligned} \\
& e^{\frac{m B}{\tau}}=1+{ }_{e}^{-m B}=\frac{1}{\tau}\left(\frac{m B}{z}\right)^{2}+O\left[\left(\frac{m B}{\bar{\tau}}\right)^{3}\right] \\
& e^{-\frac{m B}{\tau}}=1-\frac{m B}{\bar{\tau}}+\frac{1}{2}\left(\frac{m B}{\tau}\right)^{2}+O\left[\left(m_{\bar{\tau}}\right)^{3}\right] \\
& 1+e^{\frac{m B}{\tau}}+e^{-m B}=3+\left(\frac{m \beta}{\tau}\right)^{2}=3\left[1+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right]+O\left[\left(\frac{m B}{\tau}\right)^{4}\right] \\
& \log \left(1+e^{m B}+e^{-m \frac{B}{\tau}}\right)=\log 3+\frac{1}{2}(\underline{m}=)^{2}+O\left[\left(\frac{m B}{\pi}\right)^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& Z_{1}=1+e^{-\frac{(-m B)}{t}}+e^{-\frac{(m B)}{\tau}}=1+e^{\frac{m B}{E}}+e^{-\frac{m B}{\tau}} \\
& \begin{array}{lll}
\hat{\varepsilon} & \varepsilon_{t} & \hat{\tau} \varepsilon_{-} \\
\varepsilon_{0} & =1+2 \cosh \frac{m B}{\tau}
\end{array} \\
& \operatorname{porb}\left(\varepsilon_{0}\right)=\frac{1}{1+e^{\frac{m B}{c}}+e^{-\frac{m}{c}}}=\frac{1}{1+2 \cosh \frac{m B}{\tau}} \\
& \operatorname{prob}\left(\varepsilon_{+}\right)=\frac{e^{\frac{m B}{\tau}}}{1+e^{\frac{m B}{\tau}}+e^{-\frac{m B}{\tau}}}=\frac{e^{\frac{m \beta}{\tau}}}{1+2 \cosh \frac{m B}{\varepsilon}} \\
& \operatorname{prob}\left(\varepsilon_{-}\right)=\frac{e^{-\frac{m B}{\tau}}}{1+e^{\frac{m A}{\bar{\tau}}}+e^{-\frac{m B}{\tau}}}=\frac{e^{-\frac{m B}{\tau}}}{1+2 \cos L}{ }_{\bar{E}} B
\end{aligned}
$$

$$
\begin{aligned}
&-{ }_{\bar{\tau}}^{m B}\left(e^{\frac{m B}{\tau}}-e^{-\frac{m B}{\bar{\tau}}}\right) \\
& 1+e^{\frac{m B}{\tau}}+e^{-\frac{m B}{\tau}}=-\frac{m B}{\tau}\left(\frac{2 m B}{\tau}\right) \\
& f \text { madly }+O\left[\left(\frac{m B}{\bar{\tau}}\right)^{4}\right] \\
& \sigma_{1}=\log 3+\left(\frac{m B}{\tau}\right)^{2}\left(\frac{1}{3}-\frac{2}{3}\right)+O\left[\left(\frac{m B}{\tau}\right)^{4}\right] \\
&=\log 3-\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}+O\left[\left(\frac{m B}{\bar{\tau}}\right)^{4}\right]
\end{aligned}
$$

- Fir N_{S} destungush-ble spin

$$
\begin{aligned}
& \text { destringmesh-ble spm } \\
& \sigma_{N_{s}}=N_{s}\left[\log 3-\frac{1}{3}\left(\frac{m}{\tau}\right)^{2}\right]
\end{aligned}
$$

c) (5 points) The spin system is part of a larger system (eeg., the solid containing the spins) that we suppose isolated from the outside. We decrease reversibly the magnetic field to zero. Use the conservation of entropy to show that the solid temperature decreases. This method is used in adiabatic demagnetization refrigerators, which use salt pills in superconducting solenoids and typically reach 100 mK temperatures.

When we decrease adiabitiedy the mapuetie fold B, the entropy of the spins tends to increase - There fore the entropy of the sold has to decrease. The lemperaticue of the sis hd and spins decrease!

For example: if the hoar capacity of the soled is

$$
\begin{aligned}
& \text { if the hoar capacity of to sore } \begin{array}{l}
\text { 6: } C_{0} T^{3} \quad \text { (insulator, dommetod by phones) } \\
C=c_{0} T^{2} d T
\end{array}
\end{aligned}
$$

$$
d v=c d T
$$

$$
d S=\frac{1}{T} d U=c_{0} T^{2} d T
$$

$$
\begin{aligned}
& d T \quad d S=\frac{1}{T} d U=\frac{\sigma_{\text {sol }}}{\substack{S_{\text {sole }}}}=\frac{C_{0} \tau^{3}}{3 k_{b}^{2}}
\end{aligned}
$$

$$
\begin{gathered}
C_{0} \frac{T_{i}{ }^{3}}{3}+k_{b} N_{s}\left(\log 3-\frac{1}{3}\left(\frac{m B}{k_{b} T_{i}}\right)^{2}\right)=\frac{C_{0} T g^{3}}{3}+k_{B} N_{s} \log 3 \\
T_{\rho}=\left[T_{i}^{3}-\frac{3 k_{b} N_{s}}{C_{0}}\left(\frac{m B}{k_{B} T_{i}}\right)^{2}\right]^{1 / 3}
\end{gathered}
$$

3. Fermi-Dirac Particles ($\mathbf{2 0}$ points)

We will see later in the course that two half-integer spin particles cannot be in the same quantum state (Pauli exclusion principle). Therefore in one state s of energy ε_{s} per particle with one particular spin orientation, we can have either zero or one particle. Let consider such a state in equilibrium with a much larger system at temperature τ, with which it can exchange energy and particles.
a) (3 points) Write down the grand partition function of this state as a function of ε_{s}, τ and the chemical potential μ.

in the state
b) (3 points) What is the general expression of the mean number of particles in a state in term of a partial derivative of the grand partition function? Justify your answer (e.g. does not just copy it from your notes)

$$
\begin{aligned}
& \text { Stony for } \xi=\sum e e^{z} \frac{\left(\varepsilon_{s}+k\right)}{\bar{\tau}} \\
& \text { we see that } \tau \frac{\partial \log \gamma}{\partial H}=\frac{1}{\partial} \sum_{s, N_{s}} e^{-\frac{\left.\Sigma_{s}-H\right)_{s}}{\tau}} N_{s} \\
& \Rightarrow\left\langle N_{s}\right\rangle=\tau \frac{\partial \log r}{\partial \mu}
\end{aligned}
$$

c) (4 points) Deduce from this result that the mean number of particles in state s with energy ε_{s} per particle (and one spin orientation) is for half-integer spin particles

$$
\begin{aligned}
& \left\langle N_{s}\right\rangle=\frac{1}{\exp \left(\frac{\varepsilon_{s}-\mu}{\tau}\right)+1} \\
& \left\langle N_{s}\right\rangle=\tau^{\partial} \frac{\log \xi}{\partial \mu}=\frac{e^{-\left(\frac{\varepsilon-\mu)}{\tau}\right.}}{1+e^{-\left(\varepsilon-\frac{\mu}{\tau}\right)}} \\
& \Omega\left\langle N_{s}\right\rangle=\frac{1}{e^{\frac{\varepsilon \mu^{c}}{\tau}+1}}
\end{aligned}
$$

d) (5 points) In order to know the total number of particles in the system we have to sum over the density of states

$$
\langle N\rangle=\sum_{s, s p i u s} \frac{1}{\exp \left(\frac{\varepsilon_{s}-\mu}{\tau}\right)+1}
$$

We will call g_{s} is the number of independent spin states (2 for spin $1 / 2$), and perform the appropriate integral over phase space to sum over spatial quantum states. Express $\langle N\rangle$ as a function of g_{s}, the volume V and an integral over $d^{3} p$.
e) (5 points) What is the condition for $\left\langle N_{s}\right\rangle \ll 1$? If this low occupation number is correct for most of the states show that for non relativistic particles

$$
\begin{array}{rlrl}
\langle N\rangle & =g_{s} V \exp \left(\frac{\mu}{\tau}\right)\left(\frac{2 \pi M \tau}{h^{2}}\right)^{\frac{3}{2}}=g_{s} V \exp \left(\frac{\mu}{\tau}\right) n_{Q} & \varepsilon_{s}=\frac{p^{2}}{2 m} \\
& \text { or } \mu=\tau \log \left(\frac{n}{g_{s} n_{Q}}\right) \text { where } n=\frac{\langle N\rangle}{V} & & =\frac{P_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2 m}
\end{array}
$$

This is the classical result (the g_{s} factor comes from the spin degrees of freedom and is also present classically). This rigorous result justifies the Gibbs ansatz of dividing by N ! the naïve partition function for a system of N undistinguishable particles.
In this derivation, you may want to use the fact that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) d x=\sqrt{2 \pi} \sigma \\
& \Rightarrow\langle N\rangle=\frac{q_{s} V}{h^{3}} e^{\frac{\mu}{\tau}} \int_{0}^{\infty} p^{2} d p\left(d \Omega \exp \left(-\frac{p^{2}}{2 m \tau}\right)\right. \\
& \text { that we can inrequete bypart } g_{\frac{s}{} v}^{h^{3}} e_{4 \pi}^{\frac{\mu}{2}}\left(\left[-m \tau / p \exp \left(-\frac{p^{2}}{2 n \pi}\right)\right]_{0}^{+\infty}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \langle N\rangle=\frac{g_{s} v}{h^{3}} e^{\frac{\mu}{\tau}} \int_{-\infty}^{\int_{-\infty}^{+\infty} d p_{x} e^{-\frac{p_{x}^{2}}{2 m \tau}} \int_{=-\infty}^{+\infty} d p_{y} e^{-\frac{p_{x}^{2}}{2 m \tau}} \int_{=\sqrt{2 \pi m \tau}}^{\int_{-\infty}^{\frac{2}{2} \pi m \tau} d p_{t} e^{-\frac{p_{z}}{2 m \tau}}} \underset{=\sqrt{2 \pi m \tau}}{=\sqrt{2 \pi m}}} \\
& \langle N\rangle=g_{s} V \exp \left(\frac{\mu}{\tau}\right)\left(\frac{2 \pi m \tau}{D^{2}}\right)^{3 / 2}=g_{s} V \exp \left(\frac{t c}{\tau}\right) n_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The dousity of sparids. } \\
& =\frac{g s}{h^{3}} \gamma \int \frac{d^{3} p}{\exp \left(\frac{\varepsilon(p)-k}{\tau}\right)+1}
\end{aligned}
$$

