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1. Let S be the oriented surface given by the vector-valued function

~r(u, v) = 〈v2,−uv, u2〉, u ∈ [0, 3], v ∈ [−3, 3].

(a) Find the equation of tangent plane to S at the point (4,−2, 1).[6]

(b) Set up, but do not evaluate, the integral that will compute the surface area of S.[4]

(c) At what (if any) points is the tangent plane to S horizontal?[2]
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2. Let D be the region in the first quadrant bounded by the circles x2+y2 = 4 and x2+y2 = 9,
and the hyperbolas x2 − y2 = 1 and x2 − y2 = 4.

(a) Sketch the region D.[3]

(b) Evaluate the integral

∫∫
D

xy dA.[7]

Hint: the boundary curves for D given above should suggest how to define the inverse
transformation T−1 that gives u and v in terms of x and y. It won’t be necessary to
solve for x and y in terms of u and v in order to compute the Jacobian (although you
can). Instead, use the relationship

JT (u, v) =
1

JT−1(x(u, v), y(u, v))
.
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3. Let E be the solid region bounded by the surfaces z =
√
x2 + y2 and z =

√
2− x2 − y2.

(You may want to sketch the region.)

(a) Using cylindrical coordinates, find the mass of the solid occupying the region E if
its mass density is given by δ(x, y, z) = λz, where λ is a positive constant.[7]

(b) Using spherical coordinates, find the volume of the solid bounded by E.[7]
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4. Consider the vector field ~F (x, y) = (3x2 + 2y2)̂ı+ (4xy + 6y2)̂.

(a) Show that ~F (x, y) is conservative.[2]

(b) Find a function f(x, y) such that ∇f(x, y) = ~F (x, y).[5]
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(c) If C is given by the parabolic arc x = 2y2 from (0, 0) to (2, 1), followed by the line

segment from (2, 1) to (−1, 3), compute the line integral

∫
C

~F · d~r:

(i) Directly.[7]

(ii) Using the Fundamental Theorem of Calculus for line integrals.[2]
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5. Let S be the surface given by z = 4−x2−y2, for 0 ≤ z ≤ 3, oriented with outward-pointing
normal vector field, and let ~F = 〈yz,−xz, z3〉.

(a) Sketch the surface, and indicate the direction of its positively-oriented boundary
curve(s) C.[3]

(b) Compute ∇× ~F .[2]

(c) Explain why Green’s Theorem is a special case of Stokes’ Theorem.[4]
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(d) Compute

∫∫
S

(∇× ~F ) · d~S.[7]

(Hint: use Stokes’ Theorem twice.)
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6. Verify that the Divergence Theorem is true for the vector field ~F = xı̂ + ŷ + zk̂ and the
region E given by the solid ball x2 + y2 + z2 ≤ 9.[12]
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