1

The electric field in a capacitor is

$$
E=\frac{\sigma}{\varepsilon_{0}}
$$

Using the fact that for parallel plates, $Q=C V=\frac{A}{\varepsilon_{0} d} V$ we have $E=\frac{V}{\varepsilon_{0}^{2} d}$.
Now, summing the forces in the x and y directions we have the equations:

$$
\begin{aligned}
m g & =T \cos \theta \\
q E & =T \sin \theta
\end{aligned}
$$

It follows that:

$$
\frac{q E}{m g}=\tan \theta=\frac{q V}{m g \varepsilon_{0}^{2} d}
$$

This specifies the magnitude of q. We know from the direction of the battery that q must be negative.

2

3

The expression for the potential can be written down immediately:

$$
V(x)=\int \frac{k d q}{r}=\int_{0}^{2 \pi} \int_{0}^{\theta_{0}} \frac{k \sigma R^{2} \sin \phi}{\sqrt{R^{2}+x^{2}-2 R x \cos (\pi-\phi)}} d \phi d \theta=2 \pi k \sigma \int_{0}^{\theta_{0}} \frac{\sin \phi}{\sqrt{1+\left(\frac{x}{R}\right)^{2}-2 \frac{x}{R} \frac{\cos (\pi-\phi)}{R}}} d \phi
$$

We can actually do this integral exactly but it is easier to first use the expansion given in the problem on the denominator.

$$
\begin{aligned}
& V(x) \approx 2 \pi k \sigma \int_{0}^{\theta_{0}} \sin \phi\left(1+\frac{x}{R} \frac{\cos (\pi-\phi)}{R}\right) d \phi=2 \pi k \sigma\left(1-\cos \theta_{0}-\frac{x}{2 R^{2}} \sin ^{2} \theta_{0}\right) \\
& =2 \pi k \sigma\left(1-\cos \theta_{0}\right)\left[1-\frac{x \sin ^{2} \theta_{0}}{2 R^{2}\left(1-\cos \theta_{0}\right)}\right]=2 \pi k \sigma\left(1-\cos \theta_{0}\right)\left[1-\frac{\left(1+\cos \theta_{0}\right)}{2 R} \frac{x}{R}\right]
\end{aligned}
$$

Thus we have that

$$
V_{0}=2 \pi k \sigma\left(1-\cos \theta_{0}\right) \quad \text { and } \quad \alpha=-\frac{\left(1+\cos \theta_{0}\right)}{2 R}
$$

To find the electric field we first notice that it must be in the x-direction by symmetry. Thus we only need the gradient in the \hat{x} direction and it suffices to take the derivative with respect to x, and then set $x=0$. This gives:

$$
\vec{E}=\frac{V_{0} \alpha}{R} \hat{x}
$$

4

To do this problem we will use superposition of electric fields and assume that ρ is positive (WLOG). The electric field at some radial distance $r<R$ from the cylinder with no hole is given by Gauss' Law. Take a gaussian cylinder of length l parallel to the axis. Then:

$$
\oint \vec{E} \cdot d \vec{a}=2 \pi r l E=\frac{Q}{\varepsilon_{0}}=\frac{\pi r^{2} l \rho}{\varepsilon_{0}} \Longrightarrow \vec{E}=\frac{r \rho}{2 \varepsilon_{0}} \hat{r}
$$

Likewise if we position the field of the missing sphere of charge at the origin it is:

$$
\vec{E}=\frac{4 / 3 \pi\left(\frac{R}{2}\right)^{3}(-\rho)}{\varepsilon_{0} 4 \pi r^{2}} \hat{r}=-\frac{\left(\frac{R}{2}\right)^{3} \rho}{3 \varepsilon_{0} r^{2}} \hat{r} \quad(r>R / 2)
$$

Where the electric field is due to an oppositely charged sphere of the same charge density. Also note that the field at the center of a sphere is 0 .
Now we are ready to add the fields. At point A the field of the cylinder is 0 because $r=0$, but the field of the sphere points in the positive direction:

$$
\overrightarrow{E_{A}}=\frac{\left(\frac{R}{2}\right) \rho}{3 \varepsilon_{0}} \hat{x}
$$

At position B , the cylinder field is pointing in the positive x direction and the sphere field is pointing in the negative y direction:

$$
\overrightarrow{E_{B}}=\frac{\left(\frac{R}{2}\right) \rho}{3 \varepsilon_{0}}(-\hat{y})+\frac{R \rho}{4 \varepsilon_{0}} \hat{x}
$$

Atpoint C, the sphere field is 0 and the cylinder field is the same as B:

$$
\overrightarrow{E_{C}}=\frac{R \rho}{4 \varepsilon_{0}} \hat{x}
$$

PHYSICS 7B FALL 2012 SEC 2/3 PROBLEM 4 RUBRIC

This problem has three main parts: finding the electric field due to the two simple configurations, and then superposing these fields at the three points A, B, and C. Points are awarded as follows:

Cylinder (7 total)

- Argument (Gauss's Law) 4
- Magnitude 2
- Direction 1

Sphere (5 total)

- Argument 2
- Magnitude 2
- Direction 1

Superposition (5 total)

- Statement/use of principle: 3
- Execution: 2

Final answers (3 total)

- A 1
- B 1
- C 1

Problem 2

By symnetor, we can "guess" $Q_{\text {closed }}=C_{1} \frac{V}{2}$ from the first circuit since $V / 2$ must lee the voltage across each capacitor.
Alternatively, proceed as before:

$$
Q_{\text {total }}=C_{e q} V=\frac{C_{1}+c_{2}}{2} V=3 C_{2} V
$$

Also, $\begin{cases}Q_{\text {total }}=Q_{\text {closed }}+Q_{2} & \text {. Since we just found } Q_{\text {total }}=3 C_{2} V, \\ Q_{\text {closed }} / c_{1}=Q_{2} / c_{2} & \text { we can solve for } Q_{\text {closed }} \text { and Find: }\end{cases}$

$$
\text { So } Q_{\text {open }} / Q_{\text {closed }}=1 / 3
$$

$$
Q_{\text {closed }}=\frac{5}{2} C_{2} V
$$

Rubric for Problem 2

- 9 pts for computing $Q_{\text {open }}$ in terms of C_{1} and V or C_{2} and V. (this includes 4 pts for computing the equivalent capacitance $C_{\text {eq }}$ and 5 pts for getting $Q_{\text {open }}$ from there. Other methods are welcome)
 and computing $Q_{\text {open }} / Q_{\text {closed }}$
(breakdown is similar to before: 4 pts for $C_{e q}$, and 7 pts for getting Qclosed. Other methods are welcome)
- $-2 /-3$ pts for confusing series/parallel capacitors formula. -2 pts for writing $Q C=V$ instead of $Q=C V$.
$-1 /-2$ pts for wrong units or wrong factors of C or V.
-1 pt for plugging in mistake
-4 pts for writing. $\left.Q_{\text {open }}=C_{\text {eq }} V\right\}-7$ pts only if both
$-4 /-5$ pts for getting a circuit wrong conceptually

5. (a) Approach: $\quad \rho \rightarrow \vec{E} \rightarrow V$

Consider a gaussian surface which is a sphere of radius r.

Notice that the charge distribution is spherically symmetric, so $\vec{E}(\vec{r})=E(r) \hat{r}$.

$$
1 p t
$$

Then the flux through this surface is

$$
\oint_{S} \vec{E} \cdot d \vec{A}=\oint_{S} E(r) \hat{f} r r^{\prime} d A=E(r) \oint_{S}^{1} d A=E(r) \cdot 4 \pi r^{2} 2-p+s
$$

\therefore Next, we find $Q_{\text {in }}= \begin{cases}Q_{1}+Q_{2}=Q_{1 / 2} & r>R \quad \text { pot }\end{cases}$

$$
\begin{aligned}
& \oiint \dot{E} \cdot d \vec{A}=Q_{i M} / \varepsilon_{0} \\
\Rightarrow-E(r) & = \begin{cases}\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q_{1} / 2}{r^{2}} \Longleftarrow \sqrt{1 P t} & r>R \\
\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} \cdot\left(-\frac{1}{2}\right)}{R^{2}} \cdot \frac{r}{R} & r<R\end{cases}
\end{aligned}
$$

Use this path for the integral

Now we integrate \vec{E} to get V. $\Delta V=-\int \vec{E} \cdot d \vec{l}$

$T>R$

$$
\begin{aligned}
V(\infty)-V(r) & \left.=-\int_{r}^{\infty \infty} \frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} / 2}{r^{2}} \stackrel{n}{r} \cdot{ }^{n} d r=-\frac{1}{4 \pi \varepsilon_{0}} Q_{1} / 2 \cdot-\frac{1}{r}\right]_{r}^{\infty} \\
\Rightarrow V(r) & =\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} / 2}{r} \quad 2_{p+\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& r<R \\
& V(\infty)-V(r)=\underbrace{V(R)-Y(R)}+V(R)-Y(r) \quad \begin{array}{c}
\text { (Notreing there are } \\
2 \text { parts to the integral) })
\end{array} \\
& -\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q_{1} / 2}{R}+\underbrace{R}_{r} \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{-Q_{1 / 2}}{R^{2}} \cdot \frac{r}{R} D \cdot r^{\prime} d r \\
& \left.\Rightarrow V(r)=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q_{1} / 2}{R}+\left(\frac{-Q_{1 / 2}}{R^{2}} \cdot \frac{1}{2} \frac{r^{2}}{R}\right]_{r}^{R}\right)\right] \\
& \frac{1}{2}\left(R-\frac{r^{2}}{R}\right) \\
& =\frac{Q_{1}}{4 \pi \varepsilon_{0} R}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4} \frac{r^{2}}{R^{2}}\right]=\frac{Q_{1}}{4 \pi \varepsilon_{0} R}\left[\frac{1}{4}+\frac{1}{4} \frac{r^{2}}{R^{2}}\right]
\end{aligned}
$$

(b) Charge comes to port the center after th pt being released at wa $\Rightarrow V^{\prime \prime}(r=a)=V(r=0)$

$$
E_{s}=\frac{1}{2} m \cdot 0^{2}+q \cdot v(0) \quad \& E_{i}=E_{f} \quad 4 p+5
$$

$$
\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1 / 2}}{a}=\frac{Q_{1}}{4 \pi \varepsilon_{0} R} \cdot \frac{1}{4} \Rightarrow a=2 R<2 p+5
$$

Note: If you got the correct answer w/0 the correct potentials, you won't get credit for the correct answer

