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1. Suppose you need to know an equation of the tangent plane to a surface S at the point
(2, 1, 3). You don’t have an equation for the surface S, but you know that the curves[7]

~r1(t) = 〈2 + 3t, 1− t2, 3− 4t + t2〉
~r2(u) = 〈1 + u2, 2u3 − 1, 2u + 1〉

both lie in S. Find an equation of the tangent plane to S at (2, 1, 3).
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2. Consider the function f(x, y) = 4xy − 2x4 − y2.

(a) Find and classify the critical points of f .[6]
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(b) Find the absolute maximum and minimum of f subject to the constraint 2x−y =
1, if they exist. If either the maximum or the minimum does not exist, explain
why.[6]
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3. Let T be the region in R3 bounded by the surfaces z =
√

x2 + y2 and z =
√

2− x2 − y2.
Sketch the region, then compute its volume using whichever coordinate system seems
best to you.[10]
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4. Let D be the region in the first quadrant of the xy-plane bounded by the curves y = x2,
y = 2x2, x = y2 and x = 4y2.

(a) Sketch the region D.[3]

(b) Evaluate the integral[9] ∫∫
D

(
y2

x4
+

x2

y4

)
dx dy.
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5. Let ~F = (2xz + y2)̂ı + 2xŷ + (x2 + z3)k̂.

(a) Show that ~F is conservative, and find a potential function for ~F .[5]

(b) Compute

∫
C

~F · d~r, where C is given by ~r(t) = 〈t2, t + 1, 2t− 1〉, with t ∈ [0, 1].[5]
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6. Let ~F be a vector field with continuously differentiable components.

(a) Let S1 and S2 be two surfaces with a common boundary C = ∂S1 = ∂S2. Explain,[5]
with sketches, how S1 and S2 must be oriented in order to ensure that∫∫

S1

(∇× ~F ) · d~S =

∫∫
S2

(∇× ~F ) · d~S.

(b) Explain why we should expect that

∫∫
S

(∇× ~F ) · d~S = 0 if S is a closed surface.[3]
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(c) Evaluate

∫∫
S

(∇× ~F ) ·d~S if S is the hemisphere given by x2 + y2 + z2 = 1, z ≥ 0,

and ~F = yı̂− x̂ + zx3y2k̂.[7]

Page 9 of 12 Total Marks: 100



Date: 11th May, 2012 Time: 7:00-10:00 pm MATH H53

7. Verify the Divergence Theorem for ~F (x, y, z) = ||~r||~r, where ~r = xı̂+ ŷ+ zk̂, and S is
the spherical surface x2 + y2 + z2 = 9.[10]
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8. Recall (or look up on your formula sheet) the definition of differentiability discussed
at length in class.

(a) Prove that f(x, y) = x2 + y2 is differentiable for all (x, y) ∈ R2.[5]

(b) Discuss the meaning of the definition of the differentiability. In particular, how[9]
is the derivative related to the original function? How would you describe it
geometrically? Explain what you think is most significant, and why.
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9. A hypocycloid is the curve traced out by a marked point P on a circle of radius b as
it rolls without slipping along the interior of a second circle with center O and radius
a > b.

(a) Determine parametric equations for the hypocycloid.[5]

(Hint: Let O = (0, 0), and let the initial position of P be (a, 0). There should be
an obvious choice of parameter.)

(b) Find the length of the hypocycloid (for one trip around the big circle) in the case
a = 4 and b = 1.[5]
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