
CS 61A Structure and Interpretation of Computer Programs
Spring 2013 Midterm 2 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official 61A midterm 2 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Total

/15 /12 /6 /6 /11 /50

2

1. (15 points) You Will Be Baked. And Then There Will Be Cake.

(a) Assume that you have started Python 3 and executed the following statements:

the_cake = [1, 2, [3], 4, 5]

a_lie = the_cake [1:4]

the_cake = the_cake [1:4]

great = a_lie

delicious = the_cake

moist = great [:-1]

For each of the following expressions, write the value to which it evaluates. If the value is a method value,
write Method. If it is a function value, write Function. If evaluation causes an error, write Error.
If evaluation would run forever, write Forever. Otherwise, write the resulting value as the interactive
interpreter would display it.

Expression Evaluates to

the_cake

[2, [3], 4]

the_cake is a_lie

False

the_cake == great

True

the_cake is delicious

True

the_cake == moist + 4

Error

the_cake.append

Method

the_cake.append == a_lie.append

False

the_cake[1] is a_lie[1]

True

Login: 3

(b) The following is the recursive list abstract data type from lecture:

empty_rlist = None

def rlist(first , rest):

""" Creates an rlist from the element first and the rlist rest."""

return (first , rest)

def first(s):

""" Returns the first element of the rlist s"""

return s[0]

def rest(s):

""" Returns the rest (itself an rlist) of s."""

return s[1]

def len_rlist(s):

""" Returns the length of the rlist s."""

if s == empty_rlist:

return 0

return 1 + len_rlist(rest(s))

def getitem_rlist(s, i):

""" Returns the element at index i in rlist s."""

if i == 0:

return first(s)

return getitem_rlist(rest(s), i - 1)

For each of the following pieces of code, circle Y if the code contains at least one data abstraction violation,
and N if the code contains no data abstraction violations. Do not guess; leave the answer blank if
you do not know it. We will award one point for each correct answer, no points for an incorrect answer,
and 0.5 points for each answer left blank.

Y N rlist(4, rlist(5, None))

Y N rlist(1, (2, (3, empty_rlist)))

Y N rlist(rlist(1, empty_rlist), rlist(2, empty_rlist))

Y N first(rest((1, (2, (3, empty_rlist)))))

Y N x = rlist(5, rlist((4, 3, 2), rlist(1, empty_rlist)))

first(rest(x))[1]

Y N rlist(empty_rlist, empty_rlist)

Y N len(rlist(3, rlist(4, empty_rlist)))

4

2. (12 points) Environmental Disaster

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

box func box()

Return Value

Return Value

Return Value

toybox

func disp(f, box) [parent=f1]

toy

disp

f

box

0

2

2

5

f1: box

disp [parent=f1]

disp [parent=f1]

def box():
 toy = 0
 def disp(f, box):
 nonlocal toy
 if f == 0:
 toy += box
 elif f == 1:
 toy *= box
 return toy
 return disp
toybox = box()
toybox(0, 2)
toybox(0, 3)
toybox(1, 4)

Return Value 20

disp [parent=f1]

20

f

box

f

box

0

3

1

4

Login: 5

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

thrace
def thrace(x):
 def star(y):
 print(x, y)
 return x(y)
 return star

def kara(x):
 if x > 7:
 return x
 return kara(x * 2)

kara = thrace(kara)
buck = kara(5)

Return Value

Return Value

Return Value

Return Value

Return Value

func thrace(x)

x

star

f1: thrace

y

star [parent=f1]

5

y

star [parent=f1]

10

x

kara

5

x

kara

10

10

10

10

10

func kara(x)

func star(y) [parent=f1]

kara

buck 10

6

3. (6 points) Cue the Queue that Starts with a Q

For each of the following, cross out any incorrect or unnecessary lines in the following code so that the doctests
pass for both classes. Do not cross out class declarations, doctests, or docstrings. You can cross out
anything else, including method declarations, and your final code should make as much use of inheritance as
possible. Make sure to cross out the entire line for anything you wish to remove.

Note: The pop method of a list removes the item at the given position and returns it.

(a) class Queue(object):

""" Creates a Queue , which is like a list that supports 2

operations: enqueue (adding an item to the back of the queue) and

dequeue (removing an item from the front of the queue).

>>> q = Queue()

>>> q.enqueue (5)

>>> q.enqueue (3)

>>> q.enqueue (2)

>>> q.dequeue ()

5

"""

def __init__(self):

self.items = []

def enqueue(self , item):

self.items.append(item)

def dequeue(self):

return self.items.pop (0)

(b) class PriorityQueue(Queue):

"""A PriorityQueue is like a sorted list that supports two

operations: enqueue (adding an item to the PriorityQueue) and

dequeue (removing the smallest item from the PriorityQueue).

>>> p = PriorityQueue (2)

>>> p.enqueue (5)

>>> p.enqueue (3)

>>> p.enqueue (2)

>>> p.dequeue ()

2

"""

def enqueue(self , item):

Queue.enqueue(self , item)

self.items.sort()

Login: 7

4. (6 points) Prime RBIs

The Cal Mathletic Club is a group of math enthusiasts who compete in mathematical competitions. Since a
sharp mind requires a sharp body, they also field an intramural baseball team. Unfortunately, this team has
not been very good in recent years. In fact, they only had 2 runs batted in (RBIs) in all of 2010! The next two
years were nearly as dreadful, with 3 RBIs in 2011, and 5 RBIs in 2012.

Being mathletes, they notice that their RBI totals have been consecutive prime numbers in each of the last
three years. Being mathletes, they decide they should continue this trend, slowly improving their play each
year by batting in the next prime number of runs.

Help the mathletes to determine their long-term goals by writing a higher-order function make_prime_generator

that returns a function to generate primes. The latter function should return 2 the first time it is called, 3 the
next time, then 5, 7, 11, and so on, returning the next prime number each time it is called.

(For the non-mathletic, a prime number can be defined as an integer greater than 1 that is not divisible by any
other integer greater than 1. Thus, a prime number p’s only positive divisors are 1 and p.)

def make_prime_generator ():

""" Return a function that computes the next prime number each time it

is called.

>>> gen = make_prime_generator ()

>>> gen(), gen(), gen()

(2, 3, 5)

>>> [gen() for _ in range (10)]

[7, 11, 13, 17, 19, 23, 29, 31, 37, 41]

"""

last_prime = 1

def generate ():

nonlocal last_prime

found_prime = False

while not found_prime:

last_prime += 1

found_prime = True

for d in range(2, last_prime):

if last_prime % d == 0:

found_prime = False

return last_prime

return generate

Here is a recursive solution:

def make_prime_generator ():

last_prime = 1

def generate ():

nonlocal last_prime

last_prime += 1

for d in range(2, last_prime):

if last_prime % d == 0:

return generate ()

return last_prime

return generate

8

5. (11 points) Mutation: It is the Key to Our Evolution

The following is an object-oriented recursive list implementation:

class Rlist(object):

"""A recursive list consisting of a first element and the rest."""

class EmptyList(object):

def __len__(self):

return 0

empty = EmptyList ()

def __repr__(self):

f = repr(self.first)

if self.rest is Rlist.empty:

return ’Rlist ({0})’.format(f)

else:

return ’Rlist ({0}, {1})’.format(f, repr(self.rest))

def __init__(self , first , rest=empty):

self.first = first

self.rest = rest

def __len__(self):

return 1 + len(self.rest)

def __getitem__(self , i):

if i == 0:

return self.first

return self.rest[i - 1]

(a) Implement a mutating_map method that takes in a function and applies it to each element in an Rlist.
This method should mutate the list in place, replacing each element with the result of applying the function
to it. Do not create any new objects. You may assume that the input Rlist contains at least one element.

def mutating_map(self , fn):

""" Mutate this Rlist by applying fn to each element.

>>> r = Rlist(1, Rlist(2, Rlist (3)))

>>> r.mutating_map(lambda x: x + 1)

>>> r

Rlist(2, Rlist(3, Rlist (4)))

"""

self.first = fn(self.first)

if self.rest != Rlist.empty:

self.rest.mutating_map(fn)

Login: 9

(b) The sieve of Eratosthenes is an ancient algorithm for finding prime numbers. It starts with a sequence
of numbers between 2 and n, in order. The first number is a prime, and the algorithm removes all
larger multiples of that number from the sequence. Then the next remaining number is a prime, and the
algorithm removes all larger multiples of that number from the sequence, and so on, until the end of the
sequence is reached. At that point, all remaining numbers in the sequence are prime.

Here is a more concrete illustration of this process:

Initial sequence: 2, 3, 4, 5, 6, 7, 8, 9, 10
Remove larger multiples of 2: 2, 3, 5, 7, 9
Remove larger multiples of 3: 2, 3, 5, 7
Remove larger multiples of 5: 2, 3, 5, 7
Remove larger multiples of 7: 2, 3, 5, 7
Done.

In this problem, you will implement this algorithm on Rlists. Assume that you have map_rlist and
filter_rlist functions with the following signatures and docstrings:

def map_rlist(s, fn):

""" Return an Rlist resulting from mapping fn over the elements of s.

>>> map_rlist(Rlist(1, Rlist(2, Rlist (3))), lambda x: x * x)

Rlist(1, Rlist(4, Rlist (9)))

"""

def filter_rlist(s, fn):

""" Filter the elements of s by predicate fn.

>>> filter_rlist(Rlist(1, Rlist(2, Rlist (3))), lambda x: x % 2 == 1)

Rlist(1, Rlist (3))

"""

i. First, write a function sequence_to_rlist that converts a Python sequence into an Rlist. Elements
in the resulting Rlist should be in the same order as in the original sequence.

def sequence_to_rlist(seq):

""" Converts a sequence to an Rlist , preserving order.

>>> sequence_to_rlist ((3, 2, 1))

Rlist(3, Rlist(2, Rlist (1)))

"""

if not seq:

return Rlist.empty

return Rlist(seq[0], sequence_to_rlist(seq [1:]))

An iterative version:

def sequence_to_rlist(seq):

rlst = Rlist.empty

for i in range(len(seq) - 1, -1, -1):

rlst = Rlist(seq[i], rlst)

return rlst

10

ii. Now fill in the following function prime_sieve that implements the sieve of Eratosthenes algorithm.
This function takes in an Rlist of numbers between 2 and n and removes all composite numbers from
the Rlist. You may assume that the input Rlist has at least one element. You may leave the last
line blank if you do not need it.

def prime_sieve(rlst):

""" Remove all composite numbers from the input Rlist. Assumes

that the input contains the numbers from 2 to len(rlst), in

order.

>>> seq = sequence_to_rlist(range(2, 15))

>>> prime_sieve(seq)

>>> seq

Rlist(2, Rlist(3, Rlist(5, Rlist(7, Rlist (11, Rlist (13))))))

"""

while rlst.rest != Rlist.empty:

func = lambda x: x % rlst.first != 0

rlst.rest = filter_rlist(rlst.rest , func)

rlst = rlst.rest

