Question 1: Short Answers (10 pts)

(1a) Indicate if each of the following is a property, and if so, whether it is extensive or intensive.

	Not a Property	Is a Property	
		Extensive	Intensive
Mass			
Temperature			1/
Pressure			
Work by a paddlewheel in a process			E .
Internal Energy			
Internal Energy per unit mass			V
Specific Volume			1/
Heat Content per unit mass	V		

(1b) Consider a closed system. Is the value of $\int_{1}^{2} p \, dv$ the same for all processes between state 1 and 2 (here p=pressure, v=specific volume)?

[Yes/No]. Depends on path!

(1c) Consider a closed system. Is the value of $\int_{1}^{2} dv$ the same for all processes between state 1 and 2?

[Yes]No]. Always, any process, even if highly non-equil.

Key point: V is a property.

Problem 2 (20 pts)

A gas (initial pressure p_1) is confined in a cylinder by a heavy piston (of mass m). On top of the piston is a column of water (density ρ , depth h, constant), whose upper surface is exposed to atmospheric air at p_{∞} .

A bracket joins the piston to a linear spring. The spring is initially relaxed $(x_1 = 0)$.

The gas is slowly heated, increasing its pressure (final: p_2) and causing it to gradually expand.

Also Known:

Cylinder cross-sectional area: A_c Spring constant: kInitial spring displacement: $x_1=0$. Final spring displacement: $x_2>0$.

- (a) Draw a free body diagram of the piston in the final state.
- (b) Obtain an expression for the final pressure, p_2 , in terms of the various given quantities.
- (c) Sketch this process on a p-V diagram for the gas.

(...more space for Problem 2)

(c)
$$p(v) \iff p(x)$$
, where $x = \frac{V - V_1}{A_r}$

where
$$x = V - V$$

From (b),
$$p(x) = a+bx$$
,
 $50 p(V) = c+dV$

Straight Line (for this particular + process)

Problem 3 (20 pts) (This problem contains extra information beyond what is needed for the solution.)

A gas gun is used to accelerate a heavy metal projectile for an impact manufacturing process.

The gas is initially at T_1 , p_1 , and the piston is held in a fixed location by a pin.

Then an electrical heater is turned on, drawing a current of I=20 A at a voltage of V=125 V, for a duration $\Delta t=40$ s. At this stage the gas conditions are T_2 , p_2 .

Then the heater is disconnected and the pin removed. The gas rapidly expands, accelerating the piston (of negligible mass) and projectile (m=10 kg) to a velocity v_3 , at which point the piston hits the stops and the projectile exits the gun.

Many hours later, the gas conditions are T_4 , p_4 . During this long waiting time, there was a gradual heat loss of $Q_{out}=10 \text{ kJ}$ through the walls of the cylinder.

60 KJ + 5 mV4

	T [K]	p [kPa]	U [kJ]
1	300	100	30
2	(?)	500	(?)
3	(?)	(?)	(?)
4	600	200	90

= 90 kJ = 77.5 mg

(U4-U1) + (KE4-KE1) + (PE4-PE1) = - 10 KJ + IVat

(...more space for Problem 3)

Another option: 2 subsystems.

(no
$$\Delta PE$$
, no KE , no Q_{13} , closed)
$$= U_3 - U_1 = + W_{el} - W_{piston}.$$

$$W_{piston} = W_{el} + U_1 - U_3$$

and recognize U3 = U4 + 10 kJ => Wpiston = 30 kJ

Slug Waistan

(no
$$\Delta PE$$
, no ΔV , no Q_{13} , closed)
$$KE_3 - KE_1 = + W_{piston}$$

$$\frac{1}{2} m v_3^2 = 30 \text{ kJ}$$

$$V_3 = 77.5 \frac{m}{5}$$