Solutions for Midterm 2

Question 1 [Typos corrected as announced in class] matrix B, then $\operatorname{det} A=\operatorname{det} B$ (false, e.g. take $A=0, B=I_{n}$)
T If the distance from \mathbf{u} to \mathbf{v} equals that from \mathbf{u} to $-\mathbf{v}$, then $\mathbf{u} \perp \mathbf{v}$

F If a 2×2 matrix is diagonalizable, then it has distinct eigenvalues (counterexample, I_{2}) If $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$, then the vectors \mathbf{u} and \mathbf{v} are orthogonal

F If A is a 4×3 matrix with orthonormal columns, then $A^{T} A$ is the orthogonal projection matrix on $\operatorname{Col}(\mathrm{A})$ (that would be $A A^{T}$)

Comments:

- There seems to have been some confusion about the definition of pivots across sections; the question about determinant and pivots will therefore be discarded from the grading.

Question 2

See the proofs under space Resources

Question 3

The easiest way is to construct the projection P^{\perp} onto the normal line, spanned by the vector $[1,-1,1]^{T}$:

$$
P^{\perp}=\frac{1}{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

Then,

$$
P=I_{3}-P^{\perp}=\frac{1}{3}\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]
$$

Alternatively, we find a basis of the subspace - the usual one would be $[1,1,0]^{T},[-1,0,1]^{T}$ and make it orthogonal using Gram-Schmid. The second vector becomes

$$
\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\frac{[1,1,0] \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right]
$$

The second vector has square-length $2 / 3$. From here the formula for P is

$$
P=\frac{1}{2}\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{3}{2}\left[\begin{array}{lll}
-1 / 2 & 1 / 2 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right]
$$

which works out to the same answer.
For the second part, computing the characteristic polynomial is possible but painful. But, geometrically, P leaves unchanged the vectors in the plane $x-y+z=0$: so all those vectors are 1-eigenvectors. Also, P sends all vectors in the normal line to 0 , so that line is in the nullspace. We are done, because we spotted three independent eigenvectors:
P has two eigenvalues, 0 and 1 , with eigenspace dimensions 1 and 2 .

Question 4 The characteristic polynomial of A is $\lambda^{2}-2 \lambda+1$, with the double root $\lambda=1$. Now,

$$
A-I_{2}=\left[\begin{array}{cc}
6 & 4 \\
-9 & -6
\end{array}\right]
$$

which has a 1 -dimensional nullspace spanned by the vector $[2,-3]^{T}$. So, no, A is not diagonalizable because there is no second independent eigenvector. If we take $\mathbf{v}=[2,-3]^{T}$, we see that $A \mathbf{v}=\mathbf{v}$, $A^{2} \mathbf{v}=\mathbf{v}, \ldots A^{n} \mathbf{v}=\mathbf{v}$ for all n. So that choice works. (It can be shown that only multiples of this \mathbf{v} work, but you were not asked to check that.)

Question 5

The system of equations in the unknown coefficients a, b that we must solve by least squares is

$$
\left\{\begin{array}{c}
-a+b=1 \\
0 \cdot a+b=1 \\
a+b=0 \\
2 a+b=2
\end{array}\right.
$$

The relevant coefficient matrix is

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right], \quad \text { so } \quad A^{T}=\left[\begin{array}{cccc}
-1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right], \quad A^{T} A=\left[\begin{array}{cc}
6 & 2 \\
2 & 4
\end{array}\right] .
$$

The normal equations are

$$
\left[\begin{array}{ll}
6 & 2 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

with the solution $a=0.2, b=0.9$; so $\ell(x)=0.2 x+0.9$.

