
Solutions for Midterm 2

Question 1 [Typos corrected as announced in class]

T Eigenvectors for distinct eigenvalues of a real symmetric matrix are orthogonal
T The determinant of any lower-triangular square matrix is the product of the diagonal entries

F The eigenvalues of a non-singular matrix are all real (correct: non-zero)
F If A and B are square matrices and detA = 1,detB = 2, then det(A+B) = 3

T A change-of-coordinates matrix is always invertible
F Any orthogonal matrix is diagonalizable over R (only reflections are)

T The determinant of an orthogonal matrix is always ±1
T For an m× n matrix A, vectors in the column space of A are orthogonal to vectors

in the left nullspace
T If a real symmetric 4× 4 matrix has exactly two eigenvalues, then one of the eigenspaces

has dimension 2 or more
T If A is an orthogonal matrix, then the linear map x 7→ Ax is one-to-one and onto.

F If every row of the square matrix A is a linear combination of the rows of the square
matrix B, then detA = detB (false, e.g. take A = 0, B = In)

T If the distance from u to v equals that from u to −v, then u ⊥ v

F If a 2× 2 matrix is diagonalizable, then it has distinct eigenvalues (counterexample, I2)
T If ‖u + v‖2 = ‖u‖2 + ‖v‖2, then the vectors u and v are orthogonal
T If A = SBS−1 then A and B have the same characteristic polynomial.
T If the columns of the 5× 3 matrix A are orthonormal, then the linear transformation

x 7→ A · x preserves lengths and angles
T The determinant of a square matrix is ± the product of the pivots

F If A is a 4× 3 matrix with orthonormal columns, then ATA is the orthogonal
projection matrix on Col(A) (that would be AAT )

Comments:

• There seems to have been some confusion about the definition of pivots across sections; the
question about determinant and pivots will therefore be discarded from the grading.
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Question 2
See the proofs under space Resources

Question 3
The easiest way is to construct the projection P⊥ onto the normal line, spanned by the vector
[1,−1, 1]T :

P⊥ =
1

3

 1
−1
1

 [ 1 −1 1
]

=
1

3

 1 −1 1
−1 1 −1
1 −1 1


Then,

P = I3 − P⊥ =
1

3

 2 1 −1
1 2 1
−1 1 2


Alternatively, we find a basis of the subspace – the usual one would be [1, 1, 0]T , [−1, 0, 1]T and

make it orthogonal using Gram-Schmid. The second vector becomes

 −1
0
1

−
[1, 1, 0] ·

 −1
0
1


2

 1
1
0

 =

 −1/2
1/2
1


The second vector has square-length 2/3. From here the formula for P is

P =
1

2

[
1 1 0

]
·

 1
1
0

+
3

2

[
−1/2 1/2 1

]
·

 −1/2
1/2
1


which works out to the same answer.

For the second part, computing the characteristic polynomial is possible but painful. But,
geometrically, P leaves unchanged the vectors in the plane x − y + z = 0: so all those vectors are
1-eigenvectors. Also, P sends all vectors in the normal line to 0, so that line is in the nullspace.
We are done, because we spotted three independent eigenvectors:

P has two eigenvalues, 0 and 1, with eigenspace dimensions 1 and 2.

Question 4 The characteristic polynomial of A is λ2 − 2λ + 1, with the double root λ = 1.
Now,

A− I2 =

[
6 4
−9 −6

]
which has a 1-dimensional nullspace spanned by the vector [2,−3]T . So, no, A is not diagonalizable
because there is no second independent eigenvector. If we take v = [2,−3]T , we see that Av = v,
A2v = v, . . . Anv = v for all n. So that choice works. (It can be shown that only multiples of this
v work, but you were not asked to check that.)
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Question 5
The system of equations in the unknown coefficients a, b that we must solve by least squares is

−a+ b = 1
0 · a+ b = 1
a+ b = 0
2a+ b = 2

The relevant coefficient matrix is

A =


−1 1
0 1
1 1
2 1

 , so AT =

[
−1 0 1 2
1 1 1 1

]
, ATA =

[
6 2
2 4

]
.

The normal equations are [
6 2
2 4

]
·
[
a
b

]
=

[
3
4

]
with the solution a = 0.2, b = 0.9; so `(x) = 0.2x+ 0.9.
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