ME 106 FLUID MECHANICS

EXAM 1 - open class notes and bspace notes, no external communication

1. $(\mathbf{2 0}+\mathbf{5}=\mathbf{2 5 \%})$ The Pitot-static tube of an A380 jumbo jet flying at 13 km altitude, its stated service ceiling, in standard atmosphere is reading a pressure differential of $1.0 \times 10^{4} \mathrm{~Pa}$. You may consult the table in your class notes for atmospheric data.
(a) Determine the speed of the aircraft.
(b) Determine the Mach number of the aircraft.
$\mathbf{2 .}(\mathbf{2 0}+\mathbf{5}=\mathbf{2 5 \%})$ Construct and sketch the streamline equation for the flow field given in cylindrical coordinates

$$
\mathbf{u}=\left(u_{r}, u_{\theta}\right)=\left(\cos \theta, \frac{1}{r}-\sin \theta\right)
$$

Hint: remember the chain rule; $d(f g)=g d f+f d g$
3. $\mathbf{(2 5 \%)}$) Determined the force per unit length required to pull at velocity U a rod of radius R_{r} out of a cylinder of inner radius R_{c} filled with an oil of viscosity μ. The rod and the cylinder are concentric. The gap between them $h=\left(R_{c}-\right.$ R_{r}) is much smaller than their diameters, $h / R_{c}<h / R_{r} \ll 1$ so that you may wish to use planar flow approximation. Of course, you are always welcome to use the exact solution developed in class, but at your own peril!
4. $(10+10+5=25 \%)$

Consider the flow fluid of viscosity μ between two parallel infinite plates which are h apart. The top plate is moving to the right at constant velocity of U in its plane and the bottom plate is fixed. There is a constant negative pressure gradient of $d p / d x<0$ acting on the fluid in the gap. Determine the value of $P=d p / d x$ for which the shear stress
 on the top plate vanishes.
Hint: Write the force balance for an infinitesimal fluid strip and apply the boundary conditions as you go along when integrating.

