Math 121A: Midterm 1

1. The function

$$
f(x, y, z)=x^{2}+3 y^{2}+5 z^{2}+2 x y+4 y z-4 x-2 z
$$

has one minimum point. Find its location.
2. (a) Calculate the derivative of $f(x)=\log (\log (\log (x)))$.
(b) By using an appropriate series test, determine whether

$$
\sum_{n=3}^{\infty} \frac{1}{n \log (n) \log (\log (n))}
$$

converges or diverges.
(c) By using an appropriate series test, determine whether

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \log (n) \log (\log (n))}
$$

converges or diverges.
3. By using Lagrange multipliers, find the smallest possible surface area (including both ends) of a cylinder with volume V.
4. (a) By considering appropriate powers of $e^{i \theta}=\cos \theta+i \sin \theta$ or otherwise, determine an expression for $\sin ^{3} \theta$ as a linear combination of terms with the form $\sin k \theta$.
(b) Consider the annulus A defined as $a \leq r \leq b$ in polar coordinates, where $0<a<b$. Show that for any integer k, the function $r^{ \pm k} \sin k \theta$ is a solution to the Laplace equation $\nabla^{2} \phi=0$ in A.
Hint: the Laplacian in polar coordinates is given by

$$
\nabla^{2} \phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}} .
$$

(c) Find a solution to $\nabla^{2} \phi=0$ in A that satisfies the boundary conditions

$$
\phi(a, \theta)=4 \sin ^{3} \theta, \quad \phi(b, \theta)=0 .
$$

