1. (a) (10 points) Let C be the boundary of the region enclosed by the parabola $y=x^{2}$ and the line $y=1$ with counterclockwise orientation. Calculate $\int_{C}\left(y^{2}+e^{\sqrt{x}}\right) d x+x d y$.
(b) (10 points) If the directional derivatives at the point $(1,1)$ are given

$$
D_{\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle} f(1,1)=\sqrt{2}, \quad D_{\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle} f(1,1)=\sqrt{3},
$$

find $f_{x}(1,1)$ and $f_{y}(1,1)$.

Solution:

(a) Use Green's Theorem. $\frac{\partial Q}{\partial x}=1, \frac{\partial P}{\partial y}=2 y$, so

$$
\begin{aligned}
\int_{C}\left(y^{2}+e^{\sqrt{x}}\right) d x+x d y & =\iint_{D} 1-2 y d A=\int_{-1}^{1} \int_{x^{2}}^{1} 1-2 y d y d x=\int_{-1}^{1} y-\left.y^{2}\right|_{x^{2}} ^{1} d x \\
& =\int_{-1}^{1}-x^{2}+x^{4} d x=-\frac{x^{3}}{3}+\left.\frac{x^{5}}{5}\right|_{-1} ^{1}=-\frac{2}{3}+\frac{2}{5} \\
& =-\frac{4}{15}
\end{aligned}
$$

(b) The directional derivatives are related to the partial derivatives in the following way $D_{\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle} f=\frac{\sqrt{3}}{2} f_{x}+\frac{1}{2} f_{y}$ and $D_{\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle} f=\frac{1}{2} f_{x}+\frac{\sqrt{3}}{2} f_{y}$. Then, evaluating at $(1,1)$ we obtain the system of equations

$$
\begin{aligned}
& \frac{\sqrt{3}}{2} f_{x}+\frac{1}{2} f_{y}=\sqrt{2} \\
& \frac{1}{2} f_{x}+\frac{\sqrt{3}}{2} f_{y}=\sqrt{3}
\end{aligned}
$$

where both partial derivatives are evaluated at $(1,1)$. Solving the system of equations gives

$$
f_{x}(1,1)=\sqrt{6}-\sqrt{3}, f_{y}(1,1)=3-\sqrt{2} \text {. }
$$

2. Let S be the surface parametrized by $\mathbf{r}(u, v)=\left\langle\sin u \cos u, \sin ^{2} u, v\right\rangle$ where the domain of the parameters is $D=\left\{(u, v) \left\lvert\, 0 \leqslant u \leqslant \frac{\pi}{2}\right., 0 \leqslant v \leqslant \sin ^{2} u\right\}$.
(a) (10 points) Find the tangent plane at the point $(x, y, z)=\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{1}{2}\right)$.
(b) (10 points) Calculate $\iint_{S}(x+1) d S$.

Solution:

(a) We need to calculate $\mathbf{r}_{u} \times \mathbf{r}_{v}$.

$$
\mathbf{r}_{u}=\left\langle\cos ^{2} u-\sin ^{2} u, 2 \sin u \cos u, 0\right\rangle, \mathbf{r}_{v}=\langle 0,0,1\rangle
$$

so $\mathbf{r}_{u} \times \mathbf{r}_{v}=\left\langle 2 \sin u \cos u, \sin ^{2} u-\cos ^{2} u, 0\right\rangle$. The point $(x, y, z)=\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{1}{2}\right)$ corresponds to $u=\frac{\pi}{6}, v=\frac{1}{2}$. Then the normal vector to the plane is

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}\left(\frac{\pi}{6}, \frac{1}{2}\right)=\left\langle\frac{\sqrt{3}}{2},-\frac{1}{2}, 0\right\rangle .
$$

The equation of the tangent plane is $\frac{\sqrt{3}}{2}\left(x-\frac{\sqrt{3}}{4}\right)-\frac{1}{2}\left(y-\frac{1}{4}\right)=0$ or simplified

$$
2 \sqrt{3} x-2 y=1
$$

(b) $\iint_{S}(x+1) d S=\iint_{D}(\sin u \cos u+1)\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v$. The magnitude of the normal vector is

$$
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\left(4 \sin ^{2} u \cos ^{2} u+\left(\sin ^{2} u-\cos ^{2} u\right)^{2}\right)^{1 / 2}=\left(\sin ^{4} u+2 \sin ^{2} u \cos ^{2} u+\cos ^{4} u\right)^{1 / 2}
$$

that simplifies to $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\left(\left(\sin ^{2} u+\cos ^{2} u\right)^{2}\right)^{1 / 2}=1$. Then

$$
\begin{aligned}
\iint_{S}(x+1) d S & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin ^{2} u}(\sin u \cos u+1) d v d u=\int_{0}^{\frac{\pi}{2}} \sin ^{3} u \cos u+\sin ^{2} u d u \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{3} u \cos u+\frac{1}{2}(1-\cos (2 u)) d u=\frac{\sin ^{4} u}{4}+\frac{u}{2}-\left.\frac{\sin (2 u)}{4}\right|_{0} ^{\frac{\pi}{2}} \\
& =\frac{1+\pi}{4}
\end{aligned}
$$

3. (20 points) Define $\mathbf{G}=\left\langle 2 z x e^{x^{2}-y^{2}},-2 z y e^{x^{2}-y^{2}}, e^{x^{2}-y^{2}}+2 z\right\rangle, \mathbf{H}=\langle 0, x,-y\rangle$ and $\mathbf{F}=\mathbf{G}+\mathbf{H}$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the line segment from $(1,2,4)$ to $(-1,1,1)$.
Hint: Calculate the line integrals for \mathbf{G} and \mathbf{H} separately. Use a different method for each integral.

Solution:

(a) The vector field \mathbf{G} is conservative. We look for a potential:

$$
f_{x}=2 z x e^{x^{2}-y^{2}} \Rightarrow f=z e^{x^{2}-y^{2}}+g(y, z) \Rightarrow f_{y}=-2 z y e^{x^{2}-y^{2}}+g_{y}(y, z)
$$

Then $g_{y}=0$ giving $g(y, z)=h(z)$, so

$$
f=z e^{x^{2}-y^{2}}+h(z) \Rightarrow f_{z}=e^{x^{2}-y^{2}}+h^{\prime}(z)
$$

Then $h^{\prime}(z)=2 z$ giving $h=z^{2}+c$, where c is a constant. A potential for \mathbf{G} is $f(x, y, z)=$ $z e^{x^{2}-y^{2}}+z^{2}$. By the fundamental theorem of line integrals

$$
\int_{C} \mathbf{G} \cdot d \mathbf{r}=f(-1,1,1)-f(1,2,4)=-14-4 e^{-3}
$$

For \mathbf{H} we evaluate the integral directly. A parametrization of C is $\mathbf{r}(t)=\langle 1,2,4\rangle+t\langle-2,-1,-3\rangle=$ $\langle 1-2 t, 2-t, 4-3 t\rangle, 0 \leqslant t \leqslant 1$. Then

$$
\begin{aligned}
\int_{C} \mathbf{H} \cdot d \mathbf{r} & =\int_{0}^{1}\langle 0,1-2 t,-2+t\rangle \cdot\langle-2,-1,-3\rangle d t=\int_{0}^{1} 5-t d t \\
& =5-\frac{1}{2}
\end{aligned}
$$

Therefore

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=-9-\frac{1}{2}-4 e^{-3}=-\frac{19}{2}-4 e^{-3} .
$$

4. (20 points) Let S be the ellipsoid of equation $x^{2}+\frac{y^{2}}{2}+\frac{z^{2}}{3}=1$ and let (u, v, w) be a point in S with $u>0, v>0$ and $w>0$.
The tangent plane to S at (u, v, w) has equation $u x+\frac{v y}{2}+\frac{w z}{3}=1$ and together with the three coordinate planes encloses a (pyramid-like) solid E whose volume equals $\frac{1}{u v w}$.
Find the point (u, v, w) as in the first paragraph such that E has the minimum possible volume. Write what that volume is.

Solution:

The problem is to minimize $\frac{1}{u v w}$ subject to the constraint $u^{2}+\frac{v^{2}}{2}+\frac{w^{2}}{3}=1$, with $u, v, w>0$. Using Lagrange multipliers,

$$
-\frac{1}{u^{2} v w}=2 \lambda u,-\frac{1}{u v^{2} w}=\lambda v,-\frac{1}{u v w^{2}}=\frac{2}{3} \lambda w .
$$

Since u, v, w are nonzero we obtain that λ equals $\lambda=-\frac{1}{2 u^{3} v w}=-\frac{1}{u v^{3} w}=-\frac{3}{2 u v w^{3}}$. Then, from $\frac{1}{2 u^{3} v w}=\frac{1}{u v^{3} w}$ we obtain $v^{2}=2 u^{2}$; and from $\frac{1}{2 u^{3} v w}=\frac{3}{2 u v w^{3}}$ we obtain $w^{2}=3 u^{2}$.
Using the constraint we see that $3 u^{2}=1$, therefore $u=\frac{1}{\sqrt{3}}$, and then $v=\frac{\sqrt{2}}{\sqrt{3}}$ and $w=1$. The point is

$$
\left(\frac{1}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}}, 1\right)
$$

and the minimum volume is $\frac{3}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}$.
5. (20 points) Let E be the solid enclosed by the paraboloids $z=x^{2}+y^{2}$ and $z=12-2 x^{2}-2 y^{2}$ and let S be the boundary of E with outward pointing normal. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left\langle x^{3}+y^{2}, 2 y z+e^{z}, y^{2}-z^{2}\right\rangle$. Simplify your answer.

Solution:

Since S is a closed surface oriented outward we can use the divergence theorem. Now $\nabla \cdot \mathbf{F}=$ $3 x^{2}+2 z-2 z=3 x^{2}$, then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} 3 x^{2} d V
$$

To calculate the triple integral we use cylindrical coordinates. The paraboloids are $z=r^{2}$ and $z=12-2 r^{2}$. The intersection gives $r^{2}=12-2 r^{2}$ so $r=2$. Then

$$
\begin{aligned}
\iiint_{E} 3 x^{2} d V & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{12-2 r^{2}} 3 r^{2} \cos ^{2} \theta r d z d r d \theta=3 \int_{0}^{2 \pi} \cos ^{2} \theta d \theta \int_{0}^{2} r^{3}\left(12-3 r^{2}\right) d r \\
& \left.=\left.\pi\left(3 r^{4}-\frac{3}{6} r^{6}\right)\right|_{0} ^{2}\right) \\
& =48 \pi
\end{aligned}
$$

6. Let C be the curve consisting of: a line segment from $(0,0,0)$ to $(1,0,1)$ followed by the arc of a circle $x=\cos t, y=\sin t, z=1,0 \leqslant t \leqslant \frac{\pi}{2}$, followed by the line segment from $(0,1,1)$ to $(0,0,0)$.
(a) (5 points) Parametrize the two line segments (with the stated orientations) and verify that C lies in the cone of equation $z=\sqrt{x^{2}+y^{2}}$.
(b) (15 points) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=-3 y z \mathbf{i}+y^{10} e^{y^{2}} \mathbf{j}-x y \mathbf{k}$.

Solution:

(a) For the first line segment from $(0,0,0)$ to $(1,0,1)$: $\mathbf{r}(t)=t\langle 1,0,1\rangle=\langle t, 0, t\rangle, 0 \leqslant t \leqslant 1$. For the second segment from $(0,1,1)$ to $(0,0,0): \mathbf{r}(s)=(1-s)\langle 0,1,1\rangle=\langle 0,1-s, 1-s\rangle$, $0 \leqslant s \leqslant 1$.
To check that the curve lies in the cone, we verify that the parametrizations satisfy the equation of the cone. For the first line segment

$$
\sqrt{x^{2}+y^{2}}=\sqrt{t^{2}+0^{2}}=t=z, \text { so it satisfies the equation. }
$$

For the second line segment

$$
\sqrt{x^{2}+y^{2}}=\sqrt{0^{2}+(1-s)^{2}}=1-s=z, \text { so it satisfies the equation. }
$$

For the arc of the circle

$$
\sqrt{x^{2}+y^{2}}=\sqrt{\cos ^{2} t+\sin ^{2} t}=1=z, \text { so it satisfies the equation too. }
$$

(b) We use Stokes' Theorem where S is the part of the cone enclosed by the curve C. The curl of \mathbf{F} is

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-3 y z & y^{10} e^{y^{2}} & -x y
\end{array}\right|=-x \mathbf{i}-2 y \mathbf{j}+3 z \mathbf{k} .
$$

The cone $z=\sqrt{x^{2}+y^{2}}$ has equation in cylindrical coordinates $z=r$ and the surface S can be parametrized in cylindrical coordinates (or cartesian coordinates) as $\mathbf{r}(r, \theta)=$ $\langle r \cos \theta, r \sin \theta, r\rangle$, where $0 \leqslant \theta \leqslant \frac{\pi}{2}$ and $0 \leqslant r \leqslant 1$. Then

$$
\mathbf{r}_{r}=\langle\cos \theta, \sin \theta, 1\rangle, \mathbf{r}_{\theta}=\langle-r \sin \theta, r \cos \theta, 0\rangle
$$

and the cross product is $\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\langle-r \cos \theta,-r \sin \theta, r\rangle$ which is the upward pointing normal as required by the right hand rule. Then

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{1}\langle-r \cos \theta,-2 r \sin \theta, 3 r\rangle \cdot\langle-r \cos \theta,-r \sin \theta, r\rangle d r d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{2} \cos ^{2} \theta+2 r^{2} \sin ^{2} \theta+3 r^{2} d r d \theta=\frac{1}{3} \int_{0}^{\frac{\pi}{2}} 4+\sin ^{2} \theta d \theta \\
& =\frac{1}{3}\left(2 \pi+\frac{\pi}{4}\right) \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

7. (20 points) Let g be a function of one variable such that the derivatives $g^{\prime}, g^{\prime \prime}$ and $g^{\prime \prime \prime}$ are continuous on \mathbb{R}. Define $f(x, y)=g^{\prime \prime}\left(\sqrt{x^{2}+y^{2}}\right)$, that is, $f(x, y)$ equals the second derivative of g evaluated at $\sqrt{x^{2}+y^{2}}$. For the disc $D=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 9\right\}$ calculate

$$
\iint_{D} x f_{x}+y f_{y} d A
$$

in terms of the values of g, g^{\prime} and $g^{\prime \prime}$ at 0 and 3 .

Solution:

The partial derivatives of f are

$$
f_{x}=g^{\prime \prime \prime}\left(\sqrt{x^{2}+y^{2}}\right) \frac{x}{\sqrt{x^{2}+y^{2}}}, f_{y}=g^{\prime \prime \prime}\left(\sqrt{x^{2}+y^{2}}\right) \frac{y}{\sqrt{x^{2}+y^{2}}},
$$

so then

$$
x f_{x}+y f_{y}=g^{\prime \prime \prime}\left(\sqrt{x^{2}+y^{2}}\right) \frac{x^{2}}{\sqrt{x^{2}+y^{2}}}+g^{\prime \prime \prime}\left(\sqrt{x^{2}+y^{2}}\right) \frac{y^{2}}{\sqrt{x^{2}+y^{2}}}=g^{\prime \prime \prime}\left(\sqrt{x^{2}+y^{2}}\right) \sqrt{x^{2}+y^{2}}
$$

Writing the integral in polar coordinates we get

$$
\iint_{D} x f_{x}+y f_{y} d A=\int_{0}^{2 \pi} \int_{0}^{3} g^{\prime \prime \prime}(r) r \cdot r d r d \theta=2 \pi \int_{0}^{3} g^{\prime \prime \prime}(r) r^{2} d r .
$$

We integrate by parts with $u=r^{2}, d u=2 r d r, d v=g^{\prime \prime \prime}(r) d r, v=g^{\prime \prime}(r)$ to get

$$
\iint_{D} x f_{x}+y f_{y} d A=2 \pi\left(\left.g^{\prime \prime}(r) r^{2}\right|_{0} ^{3}-2 \int_{0}^{3} g^{\prime \prime}(r) r d r\right)
$$

and a new integration by parts with $u=r, d u=d r, d v=g^{\prime \prime}(r) d r, v=g^{\prime}(r)$ gives

$$
\iint_{D} x f_{x}+y f_{y} d A=2 \pi\left(\left.g^{\prime \prime}(r) r^{2}\right|_{0} ^{3}-2\left(\left.g^{\prime}(r) r\right|_{0} ^{3}-\int_{0}^{3} g^{\prime}(r) d r\right)\right)
$$

Evaluating

$$
\iint_{D} x f_{x}+y f_{y} d A=2 \pi\left(9 g^{\prime \prime}(3)-6 g^{\prime}(3)+2 g(3)-2 g(0)\right)
$$

where we used the fundamental theorem of calculus to evaluate the integral of g^{\prime}.

