
Solutions to the Final Exam, Math 53, Summer 2012

1. (a) (10 points) Let C be the boundary of the region enclosed by the parabola y = x2 and the

line y = 1 with counterclockwise orientation. Calculate

∫
C

(y2 + e
√
x)dx+ xdy.

(b) (10 points) If the directional derivatives at the point (1, 1) are given

D〈
√

3
2
, 1
2
〉f(1, 1) =

√
2, D〈 1

2
,
√
3

2
〉f(1, 1) =

√
3,

find fx(1, 1) and fy(1, 1).

Solution:

(a) Use Green’s Theorem. ∂Q
∂x

= 1, ∂P
∂y

= 2y, so∫
C

(y2 + e
√
x)dx+ xdy =

∫∫
D

1− 2ydA =

∫ 1

−1

∫ 1

x2
1− 2ydydx =

∫ 1

−1
y − y2

∣∣∣1
x2
dx

=

∫ 1

−1
−x2 + x4dx = −x

3

3
+
x5

5

∣∣∣1
−1

= −2

3
+

2

5

= − 4

15
.

(b) The directional derivatives are related to the partial derivatives in the following way

D〈
√
3
2
, 1
2
〉f =

√
3
2
fx + 1

2
fy and D〈 1

2
,
√
3
2
〉f = 1

2
fx +

√
3
2
fy. Then, evaluating at (1, 1) we obtain the

system of equations

√
3

2
fx +

1

2
fy =

√
2

1

2
fx +

√
3

2
fy =

√
3,

where both partial derivatives are evaluated at (1, 1). Solving the system of equations gives

fx(1, 1) =
√

6−
√

3, fy(1, 1) = 3−
√

2 .
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2. Let S be the surface parametrized by r(u, v) = 〈sinu cosu, sin2 u, v〉 where the domain of the
parameters is D = {(u, v)|0 6 u 6 π

2
, 0 6 v 6 sin2 u}.

(a) (10 points) Find the tangent plane at the point (x, y, z) = (
√
3
4
, 1
4
, 1
2
).

(b) (10 points) Calculate

∫∫
S

(x+ 1)dS.

Solution:

(a) We need to calculate ru × rv.

ru = 〈cos2 u− sin2 u, 2 sinu cosu, 0〉, rv = 〈0, 0, 1〉,

so ru × rv = 〈2 sinu cosu, sin2 u − cos2 u, 0〉. The point (x, y, z) = (
√
3
4
, 1
4
, 1
2
) corresponds to

u = π
6
, v = 1

2
. Then the normal vector to the plane is

ru × rv(
π

6
,
1

2
) = 〈

√
3

2
,−1

2
, 0〉.

The equation of the tangent plane is
√
3
2

(x−
√
3
4

)− 1
2
(y − 1

4
) = 0 or simplified

2
√

3x− 2y = 1 .

(b)

∫∫
S

(x+ 1)dS =

∫∫
D

(sinu cosu+ 1)|ru× rv|dudv. The magnitude of the normal vector is

|ru × rv| = (4 sin2 u cos2 u+ (sin2 u− cos2 u)2)1/2 = (sin4 u+ 2 sin2 u cos2 u+ cos4 u)1/2

that simplifies to |ru × rv| = ((sin2 u+ cos2 u)2)1/2 = 1. Then∫∫
S

(x+ 1)dS =

∫ π
2

0

∫ sin2 u

0

(sinu cosu+ 1)dvdu =

∫ π
2

0

sin3 u cosu+ sin2 u du

=

∫ π
2

0

sin3 u cosu+
1

2
(1− cos(2u)) du =

sin4 u

4
+
u

2
− sin(2u)

4

∣∣∣π2
0

=
1 + π

4
.
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3. (20 points) Define G = 〈2zxex2−y2 ,−2zyex
2−y2 , ex

2−y2 + 2z〉, H = 〈0, x,−y〉 and F = G + H.

Compute

∫
C

F · dr, where C is the line segment from (1, 2, 4) to (−1, 1, 1).

Hint: Calculate the line integrals for G and H separately. Use a different method for each
integral.

Solution:

(a) The vector field G is conservative. We look for a potential:

fx = 2zxex
2−y2 ⇒ f = zex

2−y2 + g(y, z)⇒ fy = −2zyex
2−y2 + gy(y, z),

Then gy = 0 giving g(y, z) = h(z), so

f = zex
2−y2 + h(z)⇒ fz = ex

2−y2 + h′(z).

Then h′(z) = 2z giving h = z2 + c, where c is a constant. A potential for G is f(x, y, z) =
zex

2−y2 + z2. By the fundamental theorem of line integrals∫
C

G · dr = f(−1, 1, 1)− f(1, 2, 4) = −14− 4e−3.

For H we evaluate the integral directly. A parametrization of C is r(t) = 〈1, 2, 4〉+t〈−2,−1,−3〉 =
〈1− 2t, 2− t, 4− 3t〉, 0 6 t 6 1. Then∫

C

H · dr =

∫ 1

0

〈0, 1− 2t,−2 + t〉 · 〈−2,−1,−3〉dt =

∫ 1

0

5− t dt

= 5− 1

2
.

Therefore ∫
C

F · dr = −9− 1

2
− 4e−3 = −19

2
− 4e−3 .
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4. (20 points) Let S be the ellipsoid of equation x2 +
y2

2
+
z2

3
= 1 and let (u, v, w) be a point in

S with u > 0, v > 0 and w > 0.

The tangent plane to S at (u, v, w) has equation ux +
vy

2
+
wz

3
= 1 and together with the

three coordinate planes encloses a (pyramid-like) solid E whose volume equals
1

uvw
.

Find the point (u, v, w) as in the first paragraph such that E has the minimum possible
volume. Write what that volume is.

Solution:

The problem is to minimize
1

uvw
subject to the constraint u2 +

v2

2
+
w2

3
= 1, with u, v, w > 0.

Using Lagrange multipliers,

− 1

u2vw
= 2λu, − 1

uv2w
= λv, − 1

uvw2
=

2

3
λw.

Since u, v, w are nonzero we obtain that λ equals λ = − 1

2u3vw
= − 1

uv3w
= − 3

2uvw3
. Then,

from
1

2u3vw
=

1

uv3w
we obtain v2 = 2u2; and from

1

2u3vw
=

3

2uvw3
we obtain w2 = 3u2.

Using the constraint we see that 3u2 = 1, therefore u = 1√
3
, and then v =

√
2√
3

and w = 1. The
point is ( 1√

3
,

√
2√
3
, 1
)
,

and the minimum volume is 3√
2

=
3
√

2

2
.
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5. (20 points) Let E be the solid enclosed by the paraboloids z = x2 + y2 and z = 12− 2x2− 2y2

and let S be the boundary of E with outward pointing normal. Calculate

∫∫
S

F · dS, where

F(x, y, z) = 〈x3 + y2, 2yz + ez, y2 − z2〉. Simplify your answer.

Solution:

Since S is a closed surface oriented outward we can use the divergence theorem. Now ∇·F =
3x2 + 2z − 2z = 3x2, then ∫∫

S

F · dS =

∫∫∫
E

3x2dV.

To calculate the triple integral we use cylindrical coordinates. The paraboloids are z = r2

and z = 12− 2r2. The intersection gives r2 = 12− 2r2 so r = 2. Then∫∫∫
E

3x2dV =

∫ 2π

0

∫ 2

0

∫ 12−2r2

r2
3r2 cos2 θ rdzdrdθ = 3

∫ 2π

0

cos2 θdθ

∫ 2

0

r3(12− 3r2)dr

= π(3r4 − 3

6
r6)
∣∣∣2
0
)

= 48π .
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6. Let C be the curve consisting of: a line segment from (0, 0, 0) to (1, 0, 1) followed by the arc
of a circle x = cos t, y = sin t, z = 1, 0 6 t 6 π

2
, followed by the line segment from (0, 1, 1) to

(0, 0, 0).

(a) (5 points) Parametrize the two line segments (with the stated orientations) and verify
that C lies in the cone of equation z =

√
x2 + y2.

(b) (15 points) Calculate

∫
C

F · dr, where F = −3yzi + y10ey
2
j− xyk.

Solution:

(a) For the first line segment from (0, 0, 0) to (1, 0, 1): r(t) = t〈1, 0, 1〉 = 〈t, 0, t〉, 0 6 t 6 1.
For the second segment from (0, 1, 1) to (0, 0, 0): r(s) = (1 − s)〈0, 1, 1〉 = 〈0, 1 − s, 1 − s〉,
0 6 s 6 1.

To check that the curve lies in the cone, we verify that the parametrizations satisfy the
equation of the cone. For the first line segment√

x2 + y2 =
√
t2 + 02 = t = z, so it satisfies the equation.

For the second line segment√
x2 + y2 =

√
02 + (1− s)2 = 1− s = z, so it satisfies the equation.

For the arc of the circle√
x2 + y2 =

√
cos2 t+ sin2 t = 1 = z, so it satisfies the equation too.

(b) We use Stokes’ Theorem where S is the part of the cone enclosed by the curve C. The
curl of F is

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−3yz y10ey
2 −xy

∣∣∣∣∣∣ = −xi− 2yj + 3zk.

The cone z =
√
x2 + y2 has equation in cylindrical coordinates z = r and the surface

S can be parametrized in cylindrical coordinates (or cartesian coordinates) as r(r, θ) =
〈r cos θ, r sin θ, r〉, where 0 6 θ 6 π

2
and 0 6 r 6 1. Then

rr = 〈cos θ, sin θ, 1〉, rθ = 〈−r sin θ, r cos θ, 0〉

and the cross product is rr × rθ = 〈−r cos θ,−r sin θ, r〉 which is the upward pointing normal
as required by the right hand rule. Then∫∫

S

∇× F · dS =

∫ π
2

0

∫ 1

0

〈−r cos θ,−2r sin θ, 3r〉 · 〈−r cos θ,−r sin θ, r〉drdθ

=

∫ π
2

0

∫ 1

0

r2 cos2 θ + 2r2 sin2 θ + 3r2drdθ =
1

3

∫ π
2

0

4 + sin2 θdθ

=
1

3
(2π +

π

4
)

=
3π

4
.
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7. (20 points) Let g be a function of one variable such that the derivatives g′, g′′ and g′′′ are con-
tinuous on R. Define f(x, y) = g′′(

√
x2 + y2), that is, f(x, y) equals the second derivative

of g evaluated at
√
x2 + y2. For the disc D = {(x, y)|x2 + y2 6 9} calculate∫∫

D

xfx + yfy dA,

in terms of the values of g, g′ and g′′ at 0 and 3.

Solution:

The partial derivatives of f are

fx = g′′′(
√
x2 + y2)

x√
x2 + y2

, fy = g′′′(
√
x2 + y2)

y√
x2 + y2

,

so then

xfx + yfy = g′′′(
√
x2 + y2)

x2√
x2 + y2

+ g′′′(
√
x2 + y2)

y2√
x2 + y2

= g′′′(
√
x2 + y2)

√
x2 + y2.

Writing the integral in polar coordinates we get∫∫
D

xfx + yfy dA =

∫ 2π

0

∫ 3

0

g′′′(r)r · rdrdθ = 2π

∫ 3

0

g′′′(r)r2dr.

We integrate by parts with u = r2, du = 2rdr, dv = g′′′(r)dr, v = g′′(r) to get∫∫
D

xfx + yfy dA = 2π
(
g′′(r)r2

∣∣∣3
0
− 2

∫ 3

0

g′′(r)rdr
)

and a new integration by parts with u = r, du = dr, dv = g′′(r)dr, v = g′(r) gives∫∫
D

xfx + yfy dA = 2π
(
g′′(r)r2

∣∣∣3
0
− 2
(
g′(r)r

∣∣∣3
0
−
∫ 3

0

g′(r)dr
))
.

Evaluating ∫∫
D

xfx + yfy dA = 2π(9g′′(3)− 6g′(3) + 2g(3)− 2g(0)) ,

where we used the fundamental theorem of calculus to evaluate the integral of g′.
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