
Math H54 Final Exam
December 14, 2011

Professor Michael VanValkenburgh

Name: Michael VanValkenburgh and Darsh Ranjan

Student ID:

Instructions: Show all of your work, and clearly indicate your answers. Use the backs of pages as scratch
paper. You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication
turned off and out of sight. The exam has twenty pages, including this one.

Remember: It is often possible to check your answer, and there is sometimes more than one way to
solve a problem.

Problem Your score Possible Points
1 5
2 5
3 5
4 5
5 5
6 6
7 8
8 5
9 6
10 10

Total 60
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1. (5 points) Let A ∈Mm,n and B ∈Mn,p. Show that

rank(AB) ≤ minimum{rank(A), rank(B)}.
[Recall that the rank is the dimension of the image of the associated linear transforma-
tion. Another way to say it: the rank is the dimension of the column space.]

Step 1: Show that rank(AB) ≤ rank(A).

Let ABx ∈ Col(AB) (x ∈ Rp). Then ABx = A(Bx) ∈ Col(A). Thus

Col(AB) ⊂ Col(A),

so rank(AB) ≤ rank(A).

Step 2: Show that rank(AB) ≤ rank(B).

By the Rank-Nullity Theorem,

rank(B) = p− nullity(B)

and
rank(AB) = p− nullity(AB).

So it suffices to show that
nullity(B) ≤ nullity(AB),

but this is true because clearly

Nul(B) ⊂ Nul(AB).

[If x ∈ Nul(B), then ABx = A(0) = 0.]

[It is totally fine if you write Im(A) instead of Col(A) and Ker(A) instead of Nul(A).]

Second Proof. (Ask yourself: how different is it from the first proof?)

Write

B =



| |
b1 · · · bp

| |


 ,

where bk ∈ Rn. Then by the definition of matrix multiplication we have

AB =




| |
Ab1 · · · Abp

| |


 ,

and we have
Abk ∈ Col(A).
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This shows that
Col(AB) ⊂ Col(A).

Similarly, but working with rows [exercise: fill in the details], we have

Row(AB) ⊂ Row(B).

Since row rank equals column rank, we thus have

rank(AB) = dim Col(AB) = dim Row(AB) ≤ minimum{rank(A), rank(B)}.

[Note: you can avoid discussing rows by taking transposes.]

Third Proof. Let B = {v1, . . . ,vk} be a basis for Col(B). Then, since

AB =




| |
Ab1 · · · Abp

| |


 ,

we see that {Av1, . . . , Avk} spans Col(AB). By the Toss-Out Theorem, we thus have

rank(AB) ≤ rank(B) = k.

Similarly, but working with rows [exercise: fill in the details], we have

rank(AB) ≤ rank(A).

Alternatively,. . .

Fourth Proof. Let
{ABx1, . . . , ABxN}

be a basis for Col(AB). One can show that

{Bx1, . . . , BxN}
must be linearly independent [exercise]. We then use the Toss-In Theorem to get a basis
for Col(B). Thus

N = rank(AB) ≤ rank(B).
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2. Let (V, 〈·, ··〉) be a two-dimensional real inner product space, and let B = {v1,v2} be a
basis for V .

a. (2 points) Show that there exist a, b, c ∈ R such that

〈x,y〉 = ax1y1 + b(x1y2 + x2y1) + cx2y2

for any x = x1v1 + x2v2 and y = y1v1 + y2v2 in V .

b. (3 points) Show that b2 < ac.

a. By the bilinearity of the inner product, for any

x = x1v1 + x2v2 and y = y1v1 + y2v2 ∈ V

we have

〈x,y〉 = x1y1〈v1,v1〉+ x1y2〈v1,v2〉+ x2y1〈v2,v1〉+ x2y2〈v2,v2〉.
Let

a = 〈v1,v1〉,
b = 〈v1,v2〉 (= 〈v2,v1〉 by the symmetry of the inner product), and

c = 〈v2,v2〉.
Then indeed

〈x,y〉 = ax1y1 + b(x1y2 + x2y1) + cx2y2

for any x,y ∈ V .

b. By definition, an inner product is positive definite:

〈x,x〉 > 0 for any x 6= 0 in V .

Taking 0 6= x1 ∈ R and x = x1v1, we see that

0 < 〈x,x〉 = ax2
1,

so a > 0.

For any 0 6= x ∈ V we have

0 < 〈x,x〉 = ax2
1 + 2bx1x2 + cx2

2

= a

((
x1 +

b

a
x2

)2

+

(
c

a
− b2

a2

)
x2

2

)
.

Let 0 6= x2 ∈ R and take x1 = − b
a
x2. Then

0 <

(
c

a
− b2

a2

)
x2

2,
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so ac− b2 > 0.

Second Proof of (b). The Cauchy-Schwarz inequality says

|〈v1,v2〉|2 < ||v1||2||v2||2.
(There is strict inequality because the vectors are not multiples of each other.) That is,

b2 < ac.

[There are variations of this proof, depending on to what extent you prove the Cauchy-
Schwarz inequality.]

Third Proof of (b). Let 0 6= x2 ∈ R and let x = x1v1 + x2v2. Then

0 < ||x||2 = ax2
1 + 2bx1x2 + cx2

2 (1)

for all x1 ∈ R. The roots of this polynomial are

x1 =
−2bx2 ±

√
4b2x2

2 − 4acx2
2

2a
.

Because of (1), the polynomial can not have any real roots, so we must have

b2 < ac.

Fourth Proof of (b). Let 0 6= x1 ∈ R and take

x = x1v1 +

(
−sgn(b)

√
a

c
x1

)
v2.

Then

0 < ax2
1 + 2bx1

(
−sgn(b)

√
a

c
x1

)
+ c

(a

c
x2

1

)

= 2ax2
1 − 2|b|

√
a

c
x2

1.

Thus

|b|
√

a

c
< a,

which is equivalent to
b2 < ac.

Why does this work?

5



Note for the Interested:

In B-coordinates, the inner product is of the form

〈x,y〉 =
(
x1 x2

) (
a b
b c

)(
y1

y2

)
.

Bilinearity corresponds to the fact that

(
a b
b c

)
is a matrix.

Symmetry corresponds to the fact that

(
a b
b c

)
is a symmetric matrix.

Positive-definiteness corresponds to the fact that

det

(
a b
b c

)
> 0.
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3. (5 points) Let T be an invertible linear transformation on a finite dimensional vector
space V . Prove that if T is diagonalizable then T−1 is diagonalizable.

Since T is diagonalizable, it has an eigenbasis

B = {v1, . . . ,vn}.

Say Tvj = λjvj, j = 1, . . . , n.

Since T is invertible, we have λj 6= 0 for all j.

Hence T−1vj = 1
λj

vj.

Thus B is an eigenbasis for T−1, so T−1 is diagonalizable.

[This was also a question on Midterm 2.]

Second (Less Elegant) Proof: Let B be a basis for V and let

A = [T ]B,

the matrix of T with respect to the basis B. Since T is diagonalizable, we have that
A is diagonalizable [why? this is where the proof is less elegant]. So there exists an
invertible matrix P and a diagonal matrix D such that

A = P−1DP.

Etc... [It’s hard for me to write this, being so much worse than the first proof.]
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4. (5 points) Let

A =

(
a c
b d

)
∈M2,2(R),

and suppose (a, b) 6= (0, 0). Apply the Gram-Schmidt process to the columns of A to
obtain an orthogonal basis for the column space. Simplify your final expression as much
as possible.

Let w1 =

(
a
b

)
and w2 =

(
c
d

)
.

The Gram-Schmidt process:

Let

v1 = w1 =

(
a
b

)

and

v2 = w2 − w2 ·w1

||w1||2 w1

=

(
c
d

)
− (ac + bd)

a2 + b2

(
a
b

)

=
1

a2 + b2

(
a2c + b2c− a2c− abd
a2d + b2d− abc− b2d

)

=
ad− bc

a2 + b2

(−b
a

)

=
det(A)

a2 + b2

(−b
a

)
.

If det(A) = 0, the columns of A are linearly dependent, and {v1} is a basis for Col(A).

If det(A) 6= 0, then {v1,v2} is an orthogonal basis for Col(A).
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5. (5 points) Calculate the determinant of the matrix



1 2 1 2
3 2 3 2
−1 −3 0 4
0 4 −1 −3


 .

[It might be easiest to use abstract properties of the determinant function.]

To simplify calculations, we follow the hint and use

(i) the fact that the determinant function is linear separately in each of the rows, and

(ii) the fact that if one row is equal to another row, the determinant is zero

to get

det




1 2 1 2
3 2 3 2
−1 −3 0 4
0 4 −1 −3


 = det




1 2 1 2
0 −4 0 −4
0 −1 1 6
0 4 −1 −3




= det




1 2 1 2
0 0 −4 −28
0 −1 1 6
0 0 3 21




= (−12) det




1 2 1 2
0 0 1 7
0 −1 1 6
0 0 1 7




= 0.

You could also do a similar computation with the columns.

Second Proof. I took this matrix from a linear algebra book because I think it looks
nice. Using the symmetry properties of the matrix, Darsh came up with the following
clever proof. It uses the fact that the determinant function is “alternating.”

det




1 2 1 2
3 2 3 2
−1 −3 0 4
0 4 −1 −3


 = − det




1 2 1 2
3 2 3 2
0 4 −1 −3
−1 −3 0 4


 = det




1 2 1 2
3 2 3 2
−1 4 0 −3
0 −3 −1 4




= − det




1 2 1 2
3 2 3 2
−1 −3 0 4
0 4 −1 −3


 .

Since the number is equal to its negative, it must be zero.
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6a. (3 points) Find a constant coefficient differential equation having the following functions
as solutions:

t2, sin t, t2 sin t.

b. (3 points) Check your answer. [It is easiest to leave your operator factorized.]

a. We recall that solutions of the form tk sin t, k ∈ N, occur when the auxiliary polynomial
has a repeated root.

We have that sin t satisfies (
d2

dt2
+ 1

)
sin t = 0

and t2 satisfies
d3

dt3
(t2) = 0,

so we take the constant coefficient ODE

d3

dt3

(
d2

dt2
+ 1

)3

x(t) = 0.

We could expand it out, but it’s actually more convenient to leave it factorized like this.

b. Let

L =
d3

dt3

(
d2

dt2
+ 1

)3

.

Clearly L(t2) = 0 and L(sin t) = 0.

We compute
d

dt
(t2 sin t) = 2t sin t + t2 cos t

and
d2

dt2
(t2 sin t) = 2 sin t + 4t cos t− t2 sin t,

so (
d2

dt2
+ 1

)
(t2 sin t) = 2 sin t + 4t cos t.

This (
d2

dt2
+ 1

)2

(t2 sin t) = 4

(
d2

dt2
+ 1

)
(t cos t).

But
d

dt
(t cos t) = cos t− t sin t

and
d2

dt2
(t cos t) = −2 sin t− t cos t,
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so (
d2

dt2
+ 1

)
(t cos t) = −2 sin t.

Thus (
d2

dt2
+ 1

)3

(t2 sin t) = 0,

and so
L(t2 sin t) = 0.
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7. (8 points) Use the method of variation of parameters to find the general solution of

y′′(x)− 3y′(x) + 2y(x) = sin(e−x).

[It is recommended to first write the ODE as a system of first-order ODE.]

Following the hint, we rewrite the second-order ODE as a system of first-order ODE:

d

dx

(
y(x)
y′(x)

)
=

(
y′(x)

3y′(x)− 2y(x) + sin(e−x)

)

=

(
0 1
−2 3

)(
y(x)
y′(x)

)
+

(
0

sin(e−x)

)
.

That is,

y′(x) = Ay(x) +

(
0

f(x)

)

with

A =

(
0 1
−2 3

)
and f(x) = sin(e−x).

Since the auxiliary equation is r2− 3r + 2 = (r− 2)(r− 1) = 0, we have a fundamental
matrix

X(x) =

(
ex e2x

ex 2e2x

)
.

The inverse will be important:

X(x)−1 =

(
2e−x −e−x

−e−2x e−2x

)
.

We look for a particular solution of the form

yp(x) = X(x)u(x).

(This is “variation of parameters.”) Then

y′p(x) = AX(x)u(x) + X(x)u′(x)

= Ayp(x) + X(x)u′(x),

so, to solve the equation, we want u to solve

u′(x) = X(x)−1

(
0

f(x)

)

=

(−e−x sin(e−x)
e−2x sin(e−x)

)
.
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Write

u(x) =

(
u1(x)
u2(x)

)
.

By integrating, we find that
u1(x) = − cos(e−x)

and
u2(x) = e−x cos(e−x)− sin(e−x).

Thus the general solution is

y(x) = c1e
x + c2e

2x − cos(e−x)ex + (e−x cos(e−x)− sin(e−x))e2x

= c1e
x + c2e

2x − e2x sin(e−x).
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8. (5 points) In class we proved the following theorem:

Theorem 1 The initial boundary value problem




∂2u
∂t2

= α2 ∂2u
∂x2 , 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t > 0,

u(x, 0) = f(x), ∂u
∂t

(x, 0) = g(x), 0 < x < L,

has at most one twice-continuously-differentiable solution.

Give the main steps of the proof. [You do not need to give all the details.]

Let u and v be two solutions and let w = u− v. We are to show that w ≡ 0.

The main idea is to define the “energy” of the wave at time t to be

E(t) =
1

2

∫ L

0

[(
∂w

∂t

)2

+ α2

(
∂w

∂x

)2
]

dx.

After differentiating under the integral sign, integrating by parts, and using that w
solves the wave equation, we find that E ′(t) = 0 for all t. Thus E(t) = E is a constant.
Plugging in t = 0 we see that E = 0.

From the definition of E(t), we then see that

∂w

∂t
≡ ∂w

∂x
≡ 0,

so w is a constant. Plugging in t = 0 we see that w ≡ 0.
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9. (6 points) Let L > 0. Find the Fourier sine series of the function

H(x) =
L− x

L

on the interval [0, L].

The Fourier sine series of H on [0, L] is

H(x) ∼
∞∑

n=1

bn sin
(nπx

L

)
,

where

bn =
2

L

∫ L

0

H(x) sin
(nπx

L

)
dx, n = 1, 2, 3, . . . .

That is,

bn =
2

L

∫ L

0

(
1− x

L

)
sin

(nπx

L

)
dx

= 2

∫ 1

0

(1− y) sin(nπy) dy

= (I) + (II).

For the first term:

(I) = 2

∫ 1

0

sin(nπy) dy

= − 2

nπ

∫ 1

0

d

dy
cos(nπy) dy

= − 2

nπ
[cos(nπ)− 1]

=
2

nπ
− 2

nπ
(−1)n.

For (II) we need to integrate by parts:

(II) = −2

∫ 1

0

y sin(nπy) dy

= −2

[
− 1

nπ
cos(nπ) +

∫ 1

0

1

nπ
cos(nπy) dy

]

=
2

nπ
(−1)n − 2

nπ

∫ 1

0

1

nπ

d

dy
(sin(nπy)) dy

=
2

nπ
(−1)n − 2

(nπ)2
[0]

=
2

nπ
(−1)n.

15



Putting the two parts together, we get

bn =
2

nπ
.

Second Proof. Splitting the integral into two parts is unnecessary. I do, however, get
confused by sign changes, so let me be clear and write out why integration by parts
works:

bn = 2

∫ 1

0

(1− y) sin(nπy) dy

=

∫ 1

0

[
d

dy

(
(1− y)

(−2

nπ

)
cos(nπy)

)
+

(−2

nπ

)
cos(nπy)

]
dy

=

[
(0)−

(−2

nπ

)]
− 2

nπ

∫ 1

0

cos(nπy) dy

=
2

nπ
.

16



10. (10 points) Let L > 0, α > 0, and assume L 6= nπα for any n ∈ N. Solve the problem
of “waving a rope tied to a doorknob”:





∂2u
∂t2

= α2 ∂2u
∂x2 , 0 < x < L, t > 0,

u(0, t) = cos t, u(L, t) = 0, t > 0,

u(x, 0) = f(x), ∂u
∂t

(x, 0) = g(x), 0 < x < L.

(2)

[See the final page for hints.]

[Actually, for the solutions, I will post the hints here:]

Hints for Problem 10:

Try to find u of the form
u(x, t) = v(x, t) + w(x, t),

where v solves a system of the form




∂2v
∂t2

(x, t) = α2 ∂2v
∂x2 (x, t) + h(x, t), 0 < x < L, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = F (x), ∂v
∂t

(x, 0) = G(x), 0 < x < L,

for some functions h, F , and G. Then, to solve this system, look for v of the form

v(x, t) =
∞∑

n=1

vn(t) sin
(nπx

L

)
.

[And possibly use Problem 9.]

Following the hint, we want

cos t = u(0, t) = v(0, t) + w(0, t) = w(0, t)

and
0 = u(L, t) = v(L, t) + w(L, t) = w(L, t),

which suggests that we take

w(x, t) =

(
L− x

L

)
cos t.

[I was suggesting this by asking Problem 9.]

Then we want v to solve

∂2u

∂t2
=

∂2v

∂t2
+

∂2w

∂t2

= α2 ∂2v

∂x2
+ α2∂2w

∂x2

= α2∂2u

∂x2
.
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So we want v to solve
∂2v

∂t2
= α2 ∂2v

∂x2
+

(
L− x

L

)
cos t.

That is, including all the conditions, we want v to solve




∂2v
∂t2

= α2 ∂2v
∂x2 +

(
L−x

L

)
cos t

v(0, t) = v(L, t) = 0

v(x, 0) = f(x)− (
L−x

L

)
=: F (x)

∂v
∂t

(x, 0) = g(x) =: G(x).

(3)

Again following the hint, we look for v of the form

v(x, t) =
∞∑

n=1

vn(t) sin
(nπx

L

)
.

Then we want
∞∑

n=1

v′′n(t) sin
(nπx

L

)
=

∞∑
n=1

[
−

(αnπ

L

)2

vn(t)

]
sin

(nπx

L

)
+

∞∑
n=1

[bn cos t] sin
(nπx

L

)
,

where the bn are the Fourier sine coefficients for the function L−x
L

on the interval [0, L].

This suggests that we try solving the ODE

v′′n(t) = −
(αnπ

L

)2

vn(t) + bn cos t.

By the method of undetermined coefficients, we look for a particular solution of the
form

βn cos t.

Since we are assuming L 6= αnπ (which simplifies things), we find that

βn =
bn(

αnπ
L

)2 − 1
.

Thus the general solution is

vn(t) = c1n cos
(αnπ

L
t
)

+ c2n sin
(αnπ

L
t
)

+

[
bn(

αnπ
L

)2 − 1

]
cos t.

So

v(x, t) =
∞∑

n=1

[
c1n cos

(αnπ

L
t
)

+ c2n sin
(αnπ

L
t
)

+

[
bn(

αnπ
L

)2 − 1

]
cos t

]
sin

(nπx

L

)
.
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For the initial values, we want

F (x) = v(x, 0) =
∞∑

n=1

[
c1n +

bn(
αnπ
L

)2 − 1

]
sin

(nπx

L

)
,

so the Fourier sine coefficients of F determine the c1n.

And we also want

G(x) =
∂v

∂t
(x, 0) =

∞∑
n=1

c2n

(αnπ

L

)
sin

(nπx

L

)
,

so the Fourier sine coefficients of G determine the c2n.

Hence we have found the solution v(x, t) of (3), and so

u(x, t) = v(x, t) +

(
L− x

L

)
cos t

is the solution of (2).

19



Note for the Interested:

What if we allow L = αnπ for some n ∈ N?

Then, for that one value of n, we are to solve

v′′n(t) + vn(t) = bn cos t.

We look for a solution of the form

vp(t) = βt sin t.

(This was my second guess. My first had cosine instead of sine, but that didn’t work.)

Then
v′′p(t) + vp(t) = 2β cos t,

so we take
β = bn/2.

So for this one value of n, the general solution is

vn(t) = c1n cos t + c2n sin t +
bn

2
t sin t.

In determining the c1n and c2n to satisfy the initial conditions, everything looks the same
except now we take c1n (for this one value of n) to be the nth Fourier sine coefficient of
F .

I hope you had fun with this problem—I thought of it while staring at the forty-foot-long
rope in my office.

If anyone manages to make a computer animation of the solutions, let me know! (Of
course, you would have to make choices of f and g, for example, both identically zero.)
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