Math H54 Midterm 2 October 27, 2011

Professor Michael VanValkenburgh

Name:

Student ID:

Instructions: Show all of your work, and clearly indicate your answers. Use the backs of pages as scratch paper. You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication turned off and out of sight. The exam has eleven pages, including this one. (Some pages are blank.)

Remember: It is often possible to check your answer.

Problem	Your score	Possible Points
1		4
2		5
3		4
4		6
5		5
6		6
Total		30

1. (4 points) A linear transformation from a vector space V to \mathbb{R} is called a *linear functional* on V. Let f be a linear functional on \mathbb{R}^n . Show that there exists a unique vector $\mathbf{v} \in \mathbb{R}^n$ such that

$$f(\mathbf{u}) = \mathbf{u} \cdot \mathbf{v}$$
 for all $\mathbf{u} \in \mathbb{R}^n$.

Existence: Define $\mathbf{v} \in \mathbb{R}^n$ to be the vector with *j*th entry

$$v_j := f(\mathbf{e}_j), \qquad j = 1, \dots, n_j$$

where \mathbf{e}_{j} is the *j*th standard basis vector. Then for all $\mathbf{u} \in \mathbb{R}^{n}$ we have

$$f(\mathbf{u}) = f\left(\sum_{j=1}^{n} u_j \mathbf{e}_j\right)$$
$$= \sum_{j=1}^{n} u_j f(\mathbf{e}_j)$$
$$= \sum_{j=1}^{n} u_j v_j$$
$$= \mathbf{u} \cdot \mathbf{v}.$$

Uniqueness: Say $f(\mathbf{u}) = \mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ for all $\mathbf{u} \in \mathbb{R}^n$. Then $f(\mathbf{e}_j) = v_j = w_j$ for all j, so $\mathbf{v} = \mathbf{w}$.

2. (5 points) Is the matrix $A := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ diagonalizable? Prove your answer. If it is diagonalizable, find an invertible matrix P and a diagonal matrix D such that $A = P^{-1}DP$.

Since A is upper-triangular, the eigenvalues are the diagonal entries $\lambda = 1, 3$. We now find eigenvectors: $\lambda = 1$:

$$\ker(A - I) = \ker \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

 $\lambda = 3$:

$$\ker(A - 3I) = \ker \begin{pmatrix} -2 & 1 & 0\\ 0 & -2 & 2\\ 0 & 0 & 0 \end{pmatrix} = \ker \begin{pmatrix} -2 & 0 & 1\\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix} = \operatorname{Span} \left\{ \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \right\}.$$

We only have two linearly independent eigenvectors, which is not enough for an eigenbasis. Thus A is not diagonalizable.

3. (4 points) Let T be an invertible linear transformation on a finite dimensional vector space V. Prove that if T is diagonalizable then T^{-1} is diagonalizable.

Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be an eigenbasis for T. Say $T\mathbf{v}_j = \lambda_j \mathbf{v}_j, j = 1, \dots, n$. Since T is invertible, we have $\lambda_j \neq 0$ for all j. Hence $T^{-1}\mathbf{v}_j = \frac{1}{\lambda_j}\mathbf{v}_j$. Thus \mathcal{B} is an eigenbasis for T^{-1} , so T^{-1} is diagonalizable. 4a. (4 points) Find the least squares solution(s) of the system of linear equations

$$\begin{cases} x + 2y + 3z = 6\\ x + 2y + 3z = 12\\ x + y + z = 1. \end{cases}$$

b. (2 points) Check that your solutions satisfy the normal equations.

(a) We let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 6 \\ 12 \\ 1 \end{pmatrix}.$$

To find an especially nice basis for Col(A), we column reduce:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 \mathbf{SO}

is a basis for $\operatorname{Col}(A)$. (One can check this: express each column of A as a linear combination of the \mathcal{B} -vectors.) Note that \mathcal{B} is already an orthogonal basis.

Thus

$$\begin{split} \hat{\mathbf{b}} &= \frac{\mathbf{b} \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 + \frac{\mathbf{b} \cdot \mathbf{v}_2}{||\mathbf{v}_2||^2} \mathbf{v}_2 \\ &= \begin{pmatrix} 9\\ 9\\ 1 \end{pmatrix}. \end{split}$$

Now we solve $A\mathbf{x} = \hat{\mathbf{b}}$:

$$\begin{pmatrix} 1 & 2 & 3 & 9 \\ 1 & 2 & 3 & 9 \\ 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -7 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

A particular solution of the inhomogeneous equation is

$$\mathbf{\hat{x}}_p = \begin{pmatrix} -7\\ 8\\ 0 \end{pmatrix}.$$

And the general solution of the homogeneous equation is

$$\hat{\mathbf{x}}_h = t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \qquad t \in \mathbb{R}.$$

So the least square solutions are all of the form

$$\hat{\mathbf{x}} = \begin{pmatrix} -7\\8\\0 \end{pmatrix} + t \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \qquad t \in \mathbb{R}.$$

(b) We compute

$$A^T A = \begin{pmatrix} 3 & 5 & 7 \\ 5 & 9 & 13 \\ 7 & 13 & 19 \end{pmatrix}$$

and

$$A^T \mathbf{b} = \begin{pmatrix} 19\\ 37\\ 55 \end{pmatrix}.$$

And

$$A^{T}A\hat{\mathbf{x}} = \begin{pmatrix} 3 & 5 & 7\\ 5 & 9 & 13\\ 7 & 13 & 19 \end{pmatrix} \begin{pmatrix} -7\\ 8\\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 19\\ 37\\ 55 \end{pmatrix},$$

which is what we expected.

5. (5 points) Suppose that the Gram-Schmidt process applied to the basis $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ for \mathbb{R}^n results in the orthogonal basis $\mathcal{B}' = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Let $U \in \mathbb{M}^{n,n}$ have orthonormal columns. Prove that the Gram-Schmidt process applied to $U\mathcal{B} := \{U\mathbf{x}_1, \dots, U\mathbf{x}_n\}$ results in $U\mathcal{B}' := \{U\mathbf{v}_1, \dots, U\mathbf{v}_n\}$.

We first recall that $U^T U = I$. The hypothesis says that $\mathbf{v}_1 = \mathbf{x}_1$ and

$$\mathbf{v}_j = \mathbf{x}_j - \sum_{k=1}^{j-1} \frac{\mathbf{x}_j \cdot \mathbf{v}_k}{||\mathbf{v}_k||^2} \mathbf{v}_k$$
 for j=2,...,n.

We now apply the Gram-Schmidt process to $U\mathcal{B}$, the first step being

$$\mathbf{w}_1 := U\mathbf{x}_1 = U\mathbf{v}_1.$$

We prove the result by induction. Assume that the *m*th step of the Gram-Schmidt process results in $\mathbf{w}_m = U\mathbf{v}_m$. We already saw that this holds for m = 1. Then

$$\begin{split} \mathbf{w}_{m+1} &:= U\mathbf{x}_{m+1} - \sum_{j=1}^{m} \frac{(U\mathbf{x}_{m+1}) \cdot (U\mathbf{v}_j)}{||U\mathbf{v}_j||^2} U\mathbf{v}_j \\ &= U\mathbf{x}_{m+1} - \sum_{j=1}^{m} \frac{\mathbf{x}_{m+1} \cdot \mathbf{v}_j}{||\mathbf{v}_j||^2} U\mathbf{v}_j \\ &= U\left(\mathbf{x}_{m+1} - \sum_{j=1}^{m} \frac{\mathbf{x}_{m+1} \cdot \mathbf{v}_j}{||\mathbf{v}_j||^2} \mathbf{v}_j\right) \\ &= U\mathbf{v}_{m+1}. \end{split}$$

Hence the m = 1 case implies the m = 2 case, which implies the m = 3 case, which implies the m = 4 case, which ...implies the m = n case. That is, we are done by induction.

- 6. Let V be an n-dimensional vector space, let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be an ordered basis for V, and let $T: V \to V$ be the linear transformation such that $T\mathbf{b}_1 = \mathbf{0}$ and $T\mathbf{b}_j = \mathbf{b}_{j-1}$ for $j = 2, \ldots, n$.
- a. (2 points) Find the matrix $A = [T]_{\mathcal{B}}$ of T with respect to the basis \mathcal{B} .
- b. (2 points) Prove that $T^n = 0$ but $T^{n-1} \neq 0$.
- c. (2 points) Let S be any linear transformation on V such that $S^n = 0$ and $S^{n-1} \neq 0$. Prove that there exists an ordered basis \mathcal{B}' for V such that $[S]_{\mathcal{B}'} = A$, where A is the matrix from part (a).

(a) We have

$$A = \begin{bmatrix} | & | & | \\ [T\mathbf{b}_1]_{\mathcal{B}} & \dots & [T\mathbf{b}_n]_{\mathcal{B}} \\ | & | & | \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & & 1 \\ 0 & 0 & 0 & 0 & 0 \cdots & 0 \end{bmatrix}$$

That is, A has entries

$$A_{ij} = \begin{cases} 1 & \text{if } j = i+1 \\ 0 & \text{otherwise.} \end{cases}$$

(b) We compute

$$T\left(\sum_{j=1}^{n} c_j \mathbf{b}_j\right) = \sum_{j=2}^{n} c_j \mathbf{b}_{j-1}$$
$$T^2\left(\sum_{j=1}^{n} c_j \mathbf{b}_j\right) = \sum_{j=3}^{n} c_j \mathbf{b}_{j-2}$$
$$\vdots$$
$$T^{n-1}\left(\sum_{j=1}^{n} c_j \mathbf{b}_j\right) = \sum_{j=n}^{n} c_j \mathbf{b}_{j-n+1} = c_n \mathbf{b}_1$$

This last vector is not zero if, say, $c_n = 1$. And finally

$$T^n\left(\sum_{j=1}^n c_j \mathbf{b}_j\right) = \mathbf{0}.$$

(c) Since $S^{n-1} \neq 0$, there exists some $\mathbf{v}_0 \in V$ such that $S^{n-1}\mathbf{v}_0 \neq \mathbf{0}$. Now let

$$\mathcal{B}' = \{S^{n-1}\mathbf{v}_0, S^{n-2}\mathbf{v}_0, \dots, S\mathbf{v}_0, \mathbf{v}_0\}$$
$$=: \{\mathbf{w}_1, \dots, \mathbf{w}_n\}.$$

Then $S\mathbf{w}_1 = \mathbf{0}$ and $S\mathbf{w}_j = \mathbf{w}_{j-1}$ for $j = 2, \ldots, n$.

Claim. \mathcal{B}' is a basis.

Proof It suffices to show that it is a linearly independent set. Suppose

$$\sum_{j=1}^n c_j S^{n-j} \mathbf{v}_0 = \mathbf{0}.$$

Then

$$\mathbf{0} = S^{n-1} \left(\sum_{j=1}^{n} c_j S^{n-j} \mathbf{v}_0 \right)$$
$$= c_n S^{n-1} \mathbf{v}_0,$$

so $c_n = 0$.

Suppose by induction that $c_{k+1} = c_{k+2} = \cdots = c_n = 0$. (This is true for k = n - 1.) Then

$$\mathbf{0} = S^{k-1} \left(\sum_{j=1}^{k} c_j S^{n-j} \mathbf{v}_0 \right)$$
$$= \sum_{j=1}^{k} c_j S^{n+k-j-1} \mathbf{v}_0$$
$$= c_k S^{n-1} \mathbf{v}_0,$$

so $c_k = 0$.

Hence by induction

$$c_1 = c_2 = \dots = c_n = 0.$$

Thus it is a basis and we can see as before that

$$[S]_{\mathcal{B}'} = \begin{bmatrix} | & | & | \\ [S\mathbf{w}_1]_{\mathcal{B}'} & \dots & [S\mathbf{w}_n]_{\mathcal{B}'} \\ | & | \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & & 1 \\ 0 & 0 & 0 & 0 & 0 \cdots & 0 \end{bmatrix}$$
$$= A.$$