
Math H54 Midterm 2
October 27, 2011

Professor Michael VanValkenburgh

Name:

Student ID:

Instructions: Show all of your work, and clearly indicate your answers. Use the backs of pages as scratch
paper. You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication
turned off and out of sight. The exam has eleven pages, including this one. (Some pages are blank.)

Remember: It is often possible to check your answer.

Problem Your score Possible Points
1 4
2 5
3 4
4 6
5 5
6 6

Total 30
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1. (4 points) A linear transformation from a vector space V to R is called a linear functional on V .

Let f be a linear functional on Rn. Show that there exists a unique vector v ∈ Rn such that

f(u) = u · v for all u ∈ Rn.

Existence: Define v ∈ Rn to be the vector with jth entry

vj := f(ej), j = 1, . . . , n,

where ej is the jth standard basis vector. Then for all u ∈ Rn we have

f(u) = f




n∑

j=1

ujej




=
n∑

j=1

ujf(ej)

=
n∑

j=1

ujvj

= u · v.

Uniqueness: Say f(u) = u · v = u ·w for all u ∈ Rn. Then f(ej) = vj = wj for all j, so v = w.
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2. (5 points) Is the matrix A :=




1 1 0
0 1 2
0 0 3


 diagonalizable? Prove your answer. If it is diagonalizable,

find an invertible matrix P and a diagonal matrix D such that A = P−1DP .

Since A is upper-triangular, the eigenvalues are the diagonal entries λ = 1, 3. We now find eigenvectors:

λ = 1:

ker(A− I) = ker




0 1 0
0 0 2
0 0 2


 = Span








1
0
0






 .

λ = 3:

ker(A− 3I) = ker



−2 1 0
0 −2 2
0 0 0


 = ker



−2 0 1
0 1 −1
0 0 0


 = Span








1
2
2






 .

We only have two linearly independent eigenvectors, which is not enough for an eigenbasis. Thus A is
not diagonalizable.
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3. (4 points) Let T be an invertible linear transformation on a finite dimensional vector space V . Prove
that if T is diagonalizable then T−1 is diagonalizable.

Let B = {v1, . . . ,vn} be an eigenbasis for T .

Say Tvj = λjvj , j = 1, . . . , n.

Since T is invertible, we have λj 6= 0 for all j.

Hence T−1vj = 1
λj

vj .

Thus B is an eigenbasis for T−1, so T−1 is diagonalizable.
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4a. (4 points) Find the least squares solution(s) of the system of linear equations




x + 2y + 3z = 6
x + 2y + 3z = 12
x + y + z = 1.

b. (2 points) Check that your solutions satisfy the normal equations.

(a) We let

A =




1 2 3
1 2 3
1 1 1


 , b =




6
12
1


 .

To find an especially nice basis for Col(A), we column reduce:



1 2 3
1 2 3
1 1 1


 →




1 0 0
1 0 0
0 1 0


 ,

so

B =








1
1
0


 ,




0
0
1








is a basis for Col(A). (One can check this: express each column of A as a linear combination of the
B-vectors.) Note that B is already an orthogonal basis.

Thus

b̂ =
b · v1

||v1||2 v1 +
b · v2

||v2||2 v2

=




9
9
1


 .

Now we solve Ax = b̂:



1 2 3 9
1 2 3 9
1 1 1 1


 →




1 0 −1 −7
0 1 2 8
0 0 0 0


 .

A particular solution of the inhomogeneous equation is

x̂p =



−7
8
0


 .

And the general solution of the homogeneous equation is

x̂h = t




1
−2
1


 , t ∈ R.
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So the least square solutions are all of the form

x̂ =



−7
8
0


 + t




1
−2
1


 , t ∈ R.

(b) We compute

AT A =




3 5 7
5 9 13
7 13 19




and

AT b =




19
37
55


 .

And

AT Ax̂ =




3 5 7
5 9 13
7 13 19






−7
8
0




=




19
37
55


 ,

which is what we expected.
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5. (5 points) Suppose that the Gram-Schmidt process applied to the basis B = {x1, . . . ,xn} for Rn results
in the orthogonal basis B′ = {v1, . . . ,vn}. Let U ∈ Mn,n have orthonormal columns. Prove that the
Gram-Schmidt process applied to UB := {Ux1, . . . , Uxn} results in UB′ := {Uv1, . . . , Uvn}.

We first recall that UT U = I.

The hypothesis says that v1 = x1 and

vj = xj −
j−1∑

k=1

xj · vk

||vk||2 vk for j=2,. . . ,n.

We now apply the Gram-Schmidt process to UB, the first step being

w1 := Ux1 = Uv1.

We prove the result by induction. Assume that the mth step of the Gram-Schmidt process results in
wm = Uvm. We already saw that this holds for m = 1. Then

wm+1 := Uxm+1 −
m∑

j=1

(Uxm+1) · (Uvj)
||Uvj ||2 Uvj

= Uxm+1 −
m∑

j=1

xm+1 · vj

||vj ||2 Uvj

= U


xm+1 −

m∑

j=1

xm+1 · vj

||vj ||2 vj




= Uvm+1.

Hence the m = 1 case implies the m = 2 case, which implies the m = 3 case, which implies the m = 4
case, which ...implies the m = n case. That is, we are done by induction.
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6. Let V be an n-dimensional vector space, let B = {b1, . . . ,bn} be an ordered basis for V , and let
T : V → V be the linear transformation such that Tb1 = 0 and Tbj = bj−1 for j = 2, . . . , n.

a. (2 points) Find the matrix A = [T ]B of T with respect to the basis B.

b. (2 points) Prove that Tn = 0 but Tn−1 6= 0.

c. (2 points) Let S be any linear transformation on V such that Sn = 0 and Sn−1 6= 0. Prove that there
exists an ordered basis B′ for V such that [S]B′ = A, where A is the matrix from part (a).

(a) We have

A =




| |
[Tb1]B . . . [Tbn]B
| |




=




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
... 1
0 0 0 0 0 · · · 0




That is, A has entries

Aij =

{
1 if j = i + 1
0 otherwise.

(b) We compute

T




n∑

j=1

cjbj


 =

n∑

j=2

cjbj−1

T 2




n∑

j=1

cjbj


 =

n∑

j=3

cjbj−2

...

Tn−1




n∑

j=1

cjbj


 =

n∑

j=n

cjbj−n+1 = cnb1.

This last vector is not zero if, say, cn = 1. And finally

Tn




n∑

j=1

cjbj


 = 0.

(c) Since Sn−1 6= 0, there exists some v0 ∈ V such that Sn−1v0 6= 0. Now let

B′ = {Sn−1v0, S
n−2v0, . . . , Sv0,v0}

=: {w1, . . . ,wn}.
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Then Sw1 = 0 and Swj = wj−1 for j = 2, . . . , n.

Claim. B′ is a basis.

Proof It suffices to show that it is a linearly independent set.

Suppose
n∑

j=1

cjS
n−jv0 = 0.

Then

0 = Sn−1




n∑

j=1

cjS
n−jv0




= cnSn−1v0,

so cn = 0.

Suppose by induction that ck+1 = ck+2 = · · · = cn = 0. (This is true for k = n− 1.) Then

0 = Sk−1




k∑

j=1

cjS
n−jv0




=
k∑

j=1

cjS
n+k−j−1v0

= ckSn−1v0,

so ck = 0.

Hence by induction
c1 = c2 = · · · = cn = 0.

Thus it is a basis and we can see as before that

[S]B′ =




| |
[Sw1]B′ . . . [Swn]B′

| |




=




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
... 1
0 0 0 0 0 · · · 0




= A.
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