Math H54 Midterm 2
October 27, 2011

Professor Michael VanValkenburgh

Name: \qquad

Student ID: \qquad

Instructions: Show all of your work, and clearly indicate your answers. Use the backs of pages as scratch paper. You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication turned off and out of sight. The exam has eleven pages, including this one. (Some pages are blank.)

Remember: It is often possible to check your answer.

Problem	Your score	Possible Points
1		4
2		5
3		4
4		6
5		5
6		6
Total		30

1. (4 points) A linear transformation from a vector space V to \mathbb{R} is called a linear functional on V. Let f be a linear functional on \mathbb{R}^{n}. Show that there exists a unique vector $\mathbf{v} \in \mathbb{R}^{n}$ such that

$$
f(\mathbf{u})=\mathbf{u} \cdot \mathbf{v} \quad \text { for all } \mathbf{u} \in \mathbb{R}^{n}
$$

Existence: Define $\mathbf{v} \in \mathbb{R}^{n}$ to be the vector with j th entry

$$
v_{j}:=f\left(\mathbf{e}_{j}\right), \quad j=1, \ldots, n
$$

where \mathbf{e}_{j} is the j th standard basis vector. Then for all $\mathbf{u} \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
f(\mathbf{u}) & =f\left(\sum_{j=1}^{n} u_{j} \mathbf{e}_{j}\right) \\
& =\sum_{j=1}^{n} u_{j} f\left(\mathbf{e}_{j}\right) \\
& =\sum_{j=1}^{n} u_{j} v_{j} \\
& =\mathbf{u} \cdot \mathbf{v}
\end{aligned}
$$

Uniqueness: Say $f(\mathbf{u})=\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$ for all $\mathbf{u} \in \mathbb{R}^{n}$. Then $f\left(\mathbf{e}_{j}\right)=v_{j}=w_{j}$ for all j, so $\mathbf{v}=\mathbf{w}$.
2. (5 points) Is the matrix $A:=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3\end{array}\right)$ diagonalizable? Prove your answer. If it is diagonalizable, find an invertible matrix P and a diagonal matrix D such that $A=P^{-1} D P$.

Since A is upper-triangular, the eigenvalues are the diagonal entries $\lambda=1,3$. We now find eigenvectors: $\lambda=1:$

$$
\operatorname{ker}(A-I)=\operatorname{ker}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

$\lambda=3:$

$$
\operatorname{ker}(A-3 I)=\operatorname{ker}\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right)=\operatorname{ker}\left(\begin{array}{ccc}
-2 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)\right\}
$$

We only have two linearly independent eigenvectors, which is not enough for an eigenbasis. Thus A is not diagonalizable.
3. (4 points) Let T be an invertible linear transformation on a finite dimensional vector space V. Prove that if T is diagonalizable then T^{-1} is diagonalizable.

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an eigenbasis for T.
Say $T \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}, j=1, \ldots, n$.
Since T is invertible, we have $\lambda_{j} \neq 0$ for all j.
Hence $T^{-1} \mathbf{v}_{j}=\frac{1}{\lambda_{j}} \mathbf{v}_{j}$.
Thus \mathcal{B} is an eigenbasis for T^{-1}, so T^{-1} is diagonalizable.

4a. (4 points) Find the least squares solution(s) of the system of linear equations

$$
\left\{\begin{array}{l}
x+2 y+3 z=6 \\
x+2 y+3 z=12 \\
x+y+z=1
\end{array}\right.
$$

b. (2 points) Check that your solutions satisfy the normal equations.
(a) We let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
6 \\
12 \\
1
\end{array}\right)
$$

To find an especially nice basis for $\operatorname{Col}(A)$, we column reduce:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),
$$

so

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

is a basis for $\operatorname{Col}(A)$. (One can check this: express each column of A as a linear combination of the \mathcal{B}-vectors.) Note that \mathcal{B} is already an orthogonal basis.

Thus

$$
\begin{aligned}
\hat{\mathbf{b}} & =\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2} \\
& =\left(\begin{array}{l}
9 \\
9 \\
1
\end{array}\right) .
\end{aligned}
$$

Now we solve $A \mathbf{x}=\hat{\mathbf{b}}$:

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 9 \\
1 & 2 & 3 & 9 \\
1 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & -1 & -7 \\
0 & 1 & 2 & 8 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

A particular solution of the inhomogeneous equation is

$$
\hat{\mathbf{x}}_{p}=\left(\begin{array}{c}
-7 \\
8 \\
0
\end{array}\right)
$$

And the general solution of the homogeneous equation is

$$
\hat{\mathbf{x}}_{h}=t\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \quad t \in \mathbb{R}
$$

So the least square solutions are all of the form

$$
\hat{\mathbf{x}}=\left(\begin{array}{c}
-7 \\
8 \\
0
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \quad t \in \mathbb{R}
$$

(b) We compute

$$
A^{T} A=\left(\begin{array}{ccc}
3 & 5 & 7 \\
5 & 9 & 13 \\
7 & 13 & 19
\end{array}\right)
$$

and

$$
A^{T} \mathbf{b}=\left(\begin{array}{c}
19 \\
37 \\
55
\end{array}\right)
$$

And

$$
\begin{aligned}
A^{T} A \hat{\mathbf{x}} & =\left(\begin{array}{ccc}
3 & 5 & 7 \\
5 & 9 & 13 \\
7 & 13 & 19
\end{array}\right)\left(\begin{array}{c}
-7 \\
8 \\
0
\end{array}\right) \\
& =\left(\begin{array}{l}
19 \\
37 \\
55
\end{array}\right)
\end{aligned}
$$

which is what we expected.
5. (5 points) Suppose that the Gram-Schmidt process applied to the basis $\mathcal{B}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ for \mathbb{R}^{n} results in the orthogonal basis $\mathcal{B}^{\prime}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Let $U \in \mathbb{M}^{n, n}$ have orthonormal columns. Prove that the Gram-Schmidt process applied to $U \mathcal{B}:=\left\{U \mathbf{x}_{1}, \ldots, U \mathbf{x}_{n}\right\}$ results in $U \mathcal{B}^{\prime}:=\left\{U \mathbf{v}_{1}, \ldots, U \mathbf{v}_{n}\right\}$.

We first recall that $U^{T} U=I$.
The hypothesis says that $\mathbf{v}_{1}=\mathbf{x}_{1}$ and

$$
\mathbf{v}_{j}=\mathbf{x}_{j}-\sum_{k=1}^{j-1} \frac{\mathbf{x}_{j} \cdot \mathbf{v}_{k}}{\left\|\mathbf{v}_{k}\right\|^{2}} \mathbf{v}_{k} \quad \text { for } \mathrm{j}=2, \ldots, \mathrm{n}
$$

We now apply the Gram-Schmidt process to $U \mathcal{B}$, the first step being

$$
\mathbf{w}_{1}:=U \mathbf{x}_{1}=U \mathbf{v}_{1}
$$

We prove the result by induction. Assume that the m th step of the Gram-Schmidt process results in $\mathbf{w}_{m}=U \mathbf{v}_{m}$. We already saw that this holds for $m=1$. Then

$$
\begin{aligned}
\mathbf{w}_{m+1} & :=U \mathbf{x}_{m+1}-\sum_{j=1}^{m} \frac{\left(U \mathbf{x}_{m+1}\right) \cdot\left(U \mathbf{v}_{j}\right)}{\left\|U \mathbf{v}_{j}\right\|^{2}} U \mathbf{v}_{j} \\
& =U \mathbf{x}_{m+1}-\sum_{j=1}^{m} \frac{\mathbf{x}_{m+1} \cdot \mathbf{v}_{j}}{\left\|\mathbf{v}_{j}\right\|^{2}} U \mathbf{v}_{j} \\
& =U\left(\mathbf{x}_{m+1}-\sum_{j=1}^{m} \frac{\mathbf{x}_{m+1} \cdot \mathbf{v}_{j}}{\left\|\mathbf{v}_{j}\right\|^{2}} \mathbf{v}_{j}\right) \\
& =U \mathbf{v}_{m+1}
\end{aligned}
$$

Hence the $m=1$ case implies the $m=2$ case, which implies the $m=3$ case, which implies the $m=4$ case, which ...implies the $m=n$ case. That is, we are done by induction.
6. Let V be an n-dimensional vector space, let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for V, and let $T: V \rightarrow V$ be the linear transformation such that $T \mathbf{b}_{1}=\mathbf{0}$ and $T \mathbf{b}_{j}=\mathbf{b}_{j-1}$ for $j=2, \ldots, n$.
a. (2 points) Find the matrix $A=[T]_{\mathcal{B}}$ of T with respect to the basis \mathcal{B}.
b. (2 points) Prove that $T^{n}=0$ but $T^{n-1} \neq 0$.
c. (2 points) Let S be any linear transformation on V such that $S^{n}=0$ and $S^{n-1} \neq 0$. Prove that there exists an ordered basis \mathcal{B}^{\prime} for V such that $[S]_{\mathcal{B}^{\prime}}=A$, where A is the matrix from part (a).
(a) We have

$$
\begin{aligned}
A & =\left[\begin{array}{ccccc}
\mid & & \mid \\
{\left[T \mathbf{b}_{1}\right]_{\mathcal{B}}} & \ldots & {\left[T \mathbf{b}_{n}\right]_{\mathcal{B}}} \\
\mid & & & \mid
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & & 1 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

That is, A has entries

$$
A_{i j}= \begin{cases}1 & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) We compute

$$
\begin{gathered}
T\left(\sum_{j=1}^{n} c_{j} \mathbf{b}_{j}\right)=\sum_{j=2}^{n} c_{j} \mathbf{b}_{j-1} \\
T^{2}\left(\sum_{j=1}^{n} c_{j} \mathbf{b}_{j}\right)=\sum_{j=3}^{n} c_{j} \mathbf{b}_{j-2} \\
\vdots \\
T^{n-1}\left(\sum_{j=1}^{n} c_{j} \mathbf{b}_{j}\right)=\sum_{j=n}^{n} c_{j} \mathbf{b}_{j-n+1}=c_{n} \mathbf{b}_{1} .
\end{gathered}
$$

This last vector is not zero if, say, $c_{n}=1$. And finally

$$
T^{n}\left(\sum_{j=1}^{n} c_{j} \mathbf{b}_{j}\right)=\mathbf{0}
$$

(c) Since $S^{n-1} \neq 0$, there exists some $\mathbf{v}_{0} \in V$ such that $S^{n-1} \mathbf{v}_{0} \neq \mathbf{0}$. Now let

$$
\begin{aligned}
\mathcal{B}^{\prime} & =\left\{S^{n-1} \mathbf{v}_{0}, S^{n-2} \mathbf{v}_{0}, \ldots, S \mathbf{v}_{0}, \mathbf{v}_{0}\right\} \\
& =:\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\} .
\end{aligned}
$$

Then $S \mathbf{w}_{1}=\mathbf{0}$ and $S \mathbf{w}_{j}=\mathbf{w}_{j-1}$ for $j=2, \ldots, n$.

Claim. \mathcal{B}^{\prime} is a basis.
Proof It suffices to show that it is a linearly independent set.
Suppose

$$
\sum_{j=1}^{n} c_{j} S^{n-j} \mathbf{v}_{0}=\mathbf{0}
$$

Then

$$
\begin{aligned}
\mathbf{0} & =S^{n-1}\left(\sum_{j=1}^{n} c_{j} S^{n-j} \mathbf{v}_{0}\right) \\
& =c_{n} S^{n-1} \mathbf{v}_{0}
\end{aligned}
$$

so $c_{n}=0$.
Suppose by induction that $c_{k+1}=c_{k+2}=\cdots=c_{n}=0$. (This is true for $k=n-1$.) Then

$$
\begin{aligned}
\mathbf{0} & =S^{k-1}\left(\sum_{j=1}^{k} c_{j} S^{n-j} \mathbf{v}_{0}\right) \\
& =\sum_{j=1}^{k} c_{j} S^{n+k-j-1} \mathbf{v}_{0} \\
& =c_{k} S^{n-1} \mathbf{v}_{0}
\end{aligned}
$$

so $c_{k}=0$.
Hence by induction

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

Thus it is a basis and we can see as before that

$$
\begin{aligned}
{[S]_{\mathcal{B}^{\prime}} } & =\left[\begin{array}{cccc}
\mid & & \mid \\
{\left[S \mathbf{w}_{1}\right]_{\mathcal{B}^{\prime}}} & \ldots & {\left[S \mathbf{w}_{n}\right]_{\mathcal{B}^{\prime}}} \\
\mid & \\
& =\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & & 1 \\
0 & 0 & 0 & 0 & 0 & \cdots
\end{array}\right] \\
& =A .
\end{array}\right. \text {. }
\end{aligned}
$$

