Math H54 Midterm 1

September 20, 2011

Professor Michael VanValkenburgh

Name: \qquad

Student ID: \qquad

Instructions: Show all of your work, and clearly indicate your answers. Use the backs of pages as scratch paper. You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication turned off and out of sight. The exam has eight pages, including this one.

Remember: It is often possible to check your answer, and there is sometimes more than one way to solve a problem.

Strategic Guidance: The problems are arranged in order of increasing difficulty and decreasing point value. Problem 5 might only be the difference between an "A" and an "A+."

Problem	Your score	Possible Points
1		6
2		6
3		6
4		4
5		3
Total		25

1. (6 points) Consider the vectors $\mathbf{v}_{1}=\left(\begin{array}{c}3 \\ 0 \\ -3\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$, and $\mathbf{v}_{3}=\left(\begin{array}{c}4 \\ 2 \\ -2\end{array}\right)$. Prove that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set or find $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ not all zero such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}$.

We row-reduce the matrix with column vectors \mathbf{v}_{j} :

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & -1 & 4 \\
0 & 1 & 2 \\
-3 & 2 & -2
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
3 & -1 & 4 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll}
3 & 0 & 6 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Now take, for example, $c_{1}=2, c_{2}=2$, and $c_{3}=-1$. Then we can check:

$$
\begin{aligned}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3} & =2\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right)+2\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right)-\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
\end{aligned}
$$

(The principle we are using is that $A \mathbf{x}=\mathbf{0}$ and $\operatorname{rref}(\mathrm{A}) \mathbf{x}=\mathbf{0}$ have the same solutions.)
2. (6 points) Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
1 & 2 & -1 & -1 & 0 \\
0 & 0 & 1 & 4 & 0 \\
2 & 4 & 1 & 10 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Find an invertible matrix P and a matrix R in reduced-row echelon form such that $P A=R$.

We row-reduce the augmented matrix:

$$
\begin{aligned}
\left(\begin{array}{cccccc}
1 & 2 & 0 & 3 & 0 & r_{1} \\
1 & 2 & -1 & -1 & 0 & r_{2} \\
0 & 0 & 1 & 4 & 0 & r_{3} \\
2 & 4 & 1 & 10 & 1 & r_{4} \\
0 & 0 & 0 & 0 & 1 & r_{5}
\end{array}\right) & \rightarrow\left(\begin{array}{cccccc}
1 & 2 & 0 & 3 & 0 & r_{1} \\
0 & 0 & -1 & -4 & 0 & r_{2}-r_{1} \\
0 & 0 & 1 & 4 & 0 & r_{3} \\
2 & 4 & 1 & 10 & 0 & r_{4}-r_{5} \\
0 & 0 & 0 & 0 & 1 & r_{5}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccccccc}
1 & 2 & 0 & 3 & 0 & r_{1} \\
0 & 0 & 0 & 0 & 0 & r_{2}-r_{1}+r_{3} \\
0 & 0 & 1 & 4 & 0 & r_{3} \\
0 & 0 & 1 & 4 & 0 & r_{4}-r_{5}-2 r_{1} \\
0 & 0 & 0 & 0 & 1 & r_{5}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccccccc}
1 & 2 & 0 & 3 & 0 & r_{1} \\
0 & 0 & 1 & 4 & 0 & r_{3} \\
0 & 0 & 0 & 0 & 1 & r_{5} \\
0 & 0 & 0 & 0 & 0 & r_{4}-r_{5}-2 r_{1}-r_{3} \\
0 & 0 & 0 & 0 & 0 & r_{2}-r_{1}+r_{3}
\end{array}\right)
\end{aligned}
$$

The coefficient matrix here is the matrix R. Let

$$
P=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-2 & 0 & -1 & 1 & -1 \\
-1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Now we can check:

$$
\begin{aligned}
P A & =\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-2 & 0 & -1 & 1 & -1 \\
-1 & 1 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
1 & 2 & -1 & -1 & 0 \\
0 & 0 & 1 & 4 & 0 \\
2 & 4 & 1 & 10 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=R .
\end{aligned}
$$

Note: You can do the same calculations in different notation by row-reducing

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 4 & 0 & 0 & 0 & 1 & 0 & 0 \\
2 & 4 & 1 & 10 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

This way involves a bit more writing, but in principle it is not any harder...

Note that the matrix P is not unique.
3. (6 points) It is a fact that if $A, B, C, D \in \mathbb{M}^{n, n}$ are such that $A C=C A$, then

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A D-C B)
$$

(The matrix on the left is $2 n \times 2 n$ and the matrix on the right is $n \times n$.) Give an example of $A, B, C, D \in \mathbb{M}^{2,2}$ such that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \neq \operatorname{det}(A D-C B)
$$

Explicitly compute both determinants, showing that they are not equal.

One example is given by

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right), \quad D=\left(\begin{array}{cc}
0 & 0 \\
1 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& =(-1)^{2} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =-1 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
A D-C B & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)-\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

so

$$
\operatorname{det}(A D-C B)=0
$$

There are many other examples (so this will be a difficult problem to grade). Simply start with two matrices $A, C \in \mathbb{M}^{2,2}$ such that $A C \neq C A$, then try to cook up $B, D \in \mathbb{M}^{2,2}$ to give the desired property. Choose A, B, C, D to be as simple as possible, to make all the computations easy.

Here's another example:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad D=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Then

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=1
$$

and

$$
\operatorname{det}(A D-C B)=0
$$

4. For any $A \in \mathbb{M}^{m, n}$ it is true that
(I) If A is surjective (onto), then the transpose A^{T} is injective (one-to-one), and
(II) If A is injective, then A^{T} is surjective.
a. (3 points) Prove either (I) or (II).
b. (1 point) Give a brief description of how you might try proving the other direction. (You may appeal to geometric intuition.)

You only needed to completely prove one of the above statements, then just give a sketch of the other statement. For completeness, I'll give two proofs of each of the statements.

First Proof.

In either case, there exists an invertible matrix $P \in \mathbb{M}^{m, m}$ and a matrix $R \in \mathbb{M}^{m, n}$ in reduced row echelon form such that $P A=R$.
(I): Assume A is surjective. We first prove that R is surjective. Let $\mathbf{b} \in \mathbb{R}^{m}$. Since A is surjective, there exists some $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=P^{-1} \mathbf{b}$. Thus

$$
R \mathbf{x}=P A \mathbf{x}=P P^{-1} \mathbf{b}=\mathbf{b}
$$

so R is surjective.
Since R is surjective and is in reduced row echelon form, it must have a pivot in every row (otherwise there is a row of zeros). Thus R^{T} has a pivot in every column, hence is injective.
Now we will see that A^{T} is injective. Suppose $A^{T} \mathbf{x}=\mathbf{0}$. Then

$$
R^{T}\left(P^{T}\right)^{-1} \mathbf{x}=A^{T} \mathbf{x}=\mathbf{0}
$$

Since R^{T} is injective, $\mathbf{x}=\mathbf{0}$. Hence A^{T} is injective.
(II): Assume A is injective. We first prove that R is injective. Suppose $R \mathbf{x}=\mathbf{0}$. Thus, $P A \mathbf{x}=\mathbf{0}$, hence $A \mathbf{x}=\mathbf{0}$, hence $\mathbf{x}=\mathbf{0}$.
The columns of R are thus linearly independent. Since R is in reduced row echelon form, it thus has a pivot in every column. Thus R^{T} has a pivot in every row, so is surjective.
Now we will show that A^{T} is surjective. Let $\mathbf{b} \in \mathbb{R}^{n}$. Then there exists some $\mathbf{x} \in \mathbb{R}^{m}$ such that $R^{T} \mathbf{x}=\mathbf{b}$. Hence

$$
A^{T}\left(P^{T} \mathbf{x}\right)=\mathbf{x}
$$

so A^{T} is surjective.

Second Proof. (More beautiful, more elegant...)
(I): Let $\mathbf{e}_{j} \in \mathbb{R}^{m}$ be the vector with a 1 in the j th position and 0 's everywhere else. Since A is surjective, there exists $\mathbf{v}_{j} \in \mathbb{R}^{n}$ such that $A \mathbf{v}_{j}=\mathbf{e}_{j}$. Let $B \in \mathbb{M}^{n, m}$ be the matrix whose j th column is \mathbf{v}_{j}. Then $A B=I_{m}$. Hence $B^{T} A^{T}=I_{m}$.
Now suppose $A^{T} \mathbf{x}=A^{T} \mathbf{y}$ for some $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$. Then

$$
\mathbf{x}=B^{T} A^{T} \mathbf{x}=B^{T} A^{T} \mathbf{y}=\mathbf{y}
$$

which shows that A^{T} is injective.
(II): Suppose A^{T} is not surjective. Then

$$
\left\{A^{T} \mathbf{x} ; \mathbf{x} \in \mathbb{R}^{m}\right\} \neq \mathbb{R}^{n}
$$

There exists some $\mathbf{0} \neq \mathbf{y} \in \mathbb{R}^{n}$ that is perpendicular to the whole set $\left\{A^{T} \mathbf{x} ; \mathbf{x} \in \mathbb{R}^{m}\right\}$. That is,

$$
\mathbf{y} \cdot A^{T} \mathbf{x}=\mathbf{0} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{m}
$$

Hence

$$
A \mathbf{y} \cdot \mathbf{x}=\mathbf{0} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{m}
$$

Thus $A \mathbf{y}=\mathbf{0}$. Since $\mathbf{y} \neq 0$, this shows that A is not injective.
5. (3 points) In class I stated but did not prove the fact that there is a unique function from $\mathbb{M}^{n, n}$ to \mathbb{R} that is multilinear, alternating, and normalized. Assume existence and prove uniqueness. That is, assume there is such a function and call it "det." Show that if $D: \mathbb{M}^{n, n} \rightarrow \mathbb{R}$ is another such function, then in fact $D=\operatorname{det}$. (Hint: The proof I have in mind is similar to our proof that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.)

Let $A \in \mathbb{M}^{n, n}$. Then there exist elementary matrices E_{j} and a matrix R in reduced-row echelon form such that

$$
E_{p} E_{p-1} \cdots E_{2} E_{1} R=A
$$

Let $D: \mathbb{M}^{n, n} \rightarrow \mathbb{R}$ be multilinear, alternating, and normalized. For any $B \in \mathbb{M}^{n, n}$, we have:
(a) Since D is alternating, when E_{j} represents "interchange" we have

$$
D\left(E_{j} B\right)=-D(B) .
$$

(b) Since D is multilinear, when E_{j} represents "replacement" we have

$$
D\left(E_{j} B\right)=D(B)
$$

(a) Since D is multilinear, when E_{j} represents "multiplication of a row by $c \neq 0$ " we have

$$
D\left(E_{j} B\right)=c D(B)
$$

In the special case when $D=\operatorname{det}$ and $B=I$, this says

$$
\operatorname{det}\left(E_{j}\right)= \begin{cases}-1 & \text { if } E_{j} \text { represents interchange } \\ 1 & \text { if } E_{j} \text { represents replacement } \\ c & \text { if } E_{j} \text { represents multiplication of a row by } c \neq 0\end{cases}
$$

So we have

$$
D\left(E_{j} B\right)=\operatorname{det}\left(E_{j}\right) D(B) \quad \text { for any } B \in \mathbb{M}^{n, n}
$$

Thus

$$
\begin{aligned}
D(A) & =D\left(E_{p} E_{p-1} \cdots E_{2} E_{1} R\right) \\
& =\operatorname{det}\left(E_{p}\right) \cdots \operatorname{det}\left(E_{1}\right) D(R) \\
& =\operatorname{det}\left(E_{p} \cdots E_{1}\right) D(R) .
\end{aligned}
$$

If $R=I$, then

$$
D(A)=\operatorname{det}(A)
$$

since D is normalized.
If $R \neq I$, then it has a row of zeros. Thus

$$
D(A)=0=\operatorname{det}(A)
$$

since D is alternating.
So in all cases

$$
D(A)=\operatorname{det}(A)
$$

for all $A \in \mathbb{M}^{n, n}$. That is, $D=\operatorname{det}$.

