Midterm 1
(20) 1. Evaluate the following (indefinite) integrals
a) $\int e^{\sqrt{x}} d x$
b) $\quad \int x \tan ^{2} x d x$
(20) 2. Evaluate the following (definite) integrals:
a) $\int_{-\infty}^{\infty} \frac{4 x^{2}}{x^{4}+4} d x$
b) $\int_{0}^{\pi / 2} \frac{\cos x}{\sqrt{1+\sin ^{2} x}} d x$
(20) 3. a) Suppose that $f(x)$ is a function defined on $[a, b]$. State the formula for the area of the surface of revolution obtained by rotating the graph of f around the y axis.
b) Find that area in the case when $f(x)=3 x^{1 / 3}$ and $a=0, b=1$.
(20) 4. Determine (providing an explanation) the convergence or divergence of the following series:
a) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$
b) $\sum_{n=1}^{\infty} \frac{1+(-1)^{n} n}{n^{2}+2 n}$
c) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{e^{n^{2}}}$
(20) 5. a) Estimate the error in approximating the following series by the sum of its first 10 terms:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}+n^{2}}
$$

b) Estimate the partial sums of the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

c) Compute the sum of the series

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}
$$

