MATH 1B

Lec. 3, Spring 2010
Midterm 2

Let

$$
a_{n}=(-1)^{n} \frac{2 n^{2}+3}{n^{2}+n+1}
$$

a) Determine whether the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges or diverges. If it converges, find what it converges to. If it does not converge, state the reason why.
b) Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ converges or diverges. If it converges, find what it converges to. If it does not converge, state the reason why.

2

Find the sum $\sum_{n=1}^{\infty} a_{n}$, where

$$
a_{n}=\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}} .
$$

by computing the partial sums and taking a limit

3

Use the integral test to determine whether

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n}
$$

is convergent, or not. (Note that the series meets the conditions for the integral test.)

Determine if the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{4^{n}}
$$

is absolutely convergent, conditionally convergent or divergent.

5

Determine if the series

$$
\sum_{n=2}^{\infty}\left(\frac{n}{\ln n}\right)^{n}
$$

is convergent or divergent.

6

Find the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} n x^{n} .
$$

Which function of x does this sum up to? (Recall that the series is related in a simple way to another series you know well).

7

Find Taylor/MacLaurin series expansion for

$$
f(x)=\exp (2 x),
$$

around $x=0$, using the definition of the Taylor/MacLaurin series. Can you check your answer against something you already know?

