## Final Examination

| Name (printed):                                                      |                 |        |
|----------------------------------------------------------------------|-----------------|--------|
| Signature:                                                           |                 |        |
| SID:                                                                 | 0               |        |
| GSI:                                                                 | 1 2             | non C  |
|                                                                      | 3               | E 18   |
| Section Time:                                                        | 5               |        |
| Put your name on every page.                                         | 6               | έx     |
| Closed book except for crib sheet. No calculators.                   | 8               |        |
| SHOW YOUR WORK. Cross out anything you have                          | 9               |        |
| written that you do not want the grader to consider.                 | Total           |        |
| The points for each problem are in parentheses. Perfect score = 200. | Grade<br>Points | altr - |

<sup>0. (10)</sup> Suppose  $f(x)=1+x^2$ . If  $g=f\circ f$  and  $h=f\circ g$ , what are g'(1) and h'(1)?

1. (15) Find f' for the given functions f.

(a) 
$$f(x) = \sqrt{1 + \sqrt{1 + x^2}}$$
 (b)  $f(x) = e^{\sqrt{\ln x}}$ 

(b) 
$$f(x) = e^{\sqrt{\ln x}}$$

(c) 
$$f(x) = \int_0^x e^{-(x-t)^2} dt$$

2. (15) Evaluate the limits.

(a) 
$$\lim_{x\to 0} \frac{\cos 5x - 1}{x^2}$$

(b) 
$$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$$
 (c)  $\lim_{x \to 0} \frac{x^x - 1}{\sqrt{x}}$ 

(c) 
$$\lim_{x\to 0} \frac{x^x - 1}{\sqrt{x}}$$

| Name |  |
|------|--|
|      |  |

3. (15) What are the maximum and minimum values of the function  $f(x) = (2x+1)e^{-x^2}$  on the interval [0,1]?

4. (15) Perform the integrations.

(a) 
$$\int e^x \cos(e^x) dx$$

(b) 
$$\int \frac{x^2 + x + 1}{x - 1} dx$$

(a) 
$$\int e^x \cos(e^x) dx$$
 (b)  $\int \frac{x^2 + x + 1}{x - 1} dx$  (c)  $\int_0^1 (1 - x^{1/3})^{3/2} dx$ 

5. (15) Find the area of the region bounded by the parabola  $y = x^2$ , the y-axis, and the tangent line to the parabola at the point (2,4).

6. (15) What is the volume of the solid one obtains by revolving about the y-axis the region bounded by the right branch of the hyperbola  $x^2 - y^2 = 1$  and the line x = 2?

| Name |  |
|------|--|
|      |  |

7. (20) What is the volume of the solid one obtains by revolving about the x-axis the region below the line y = 4 and above the curve  $y = e^x + e^{-x}$ ?

- 8. (30) For the function  $f(x) = \frac{x}{(1-x)^2}$ :
  - (a) Determine the intervals of increase, the intervals of decrease, and the local maxima and minima.
  - (b) Determine the intervals of upward and downward concavity, and the points of inflection.
  - (c) Sketch the graph.

| Name |  |  |  |  |
|------|--|--|--|--|
|      |  |  |  |  |

- (30) Ship A is headed east at 30 miles per hour. Ship B is headed north at 30 miles per hour. At noon ship B is 30 miles due south of ship A.
  - (a) What is the relative position of the ships when the distance between them is smallest?
  - (b) At what rate is the distance between the ships increasing at 3 p.m.?

| Name |  |  |  |  |  |
|------|--|--|--|--|--|
|      |  |  |  |  |  |

10. (20) A hemispherical bowl had radius 6 inches at its top. Water is dripping into the bowl at a rate of 2 cubic inches per minute. At what rate is the water level rising when the water is 4 inches deep?