\qquad

Mid-Term Examination No. 1 - Duration 1 hour and 45 minutes

Instructions:

- Read these instructions. Do not turn the exam over until instructed to do so.
- Work all problems. Pace yourself so that you have time to work on each problem. Reasonable assumptions and approximations should be made where necessary.
- Show all relevant work. Credit will not be given for key elements of the solution that are not apparent.
- Partial credit will be given if procedures are outlined clearly.
- Work the solutions for each of the problems on separate sheets, working on one side of each sheet of paper. One problem solution may span more than one sheet. However, do not show the work for more than one problem on any given sheet. Staple the solution sheets to this cover sheet, problem 1 first, then problem 2, etc.
- If you have any questions, or need any paper or other materials, walk to the front of the classroom and ask the exam proctor. Do not raise your hand to get the proctor's attention, and do not call out questions from your seat.
- Neatness counts five percent of the grade. Therefore, write neatly and organize your solutions to make checking as easy as possible.
- Unless otherwise stated, all problems use the ACI 318-11 strength design method, and all concrete is normal weight.

$$
\text { Possible Points } \quad \text { Score }
$$

Problem 1	30	-
Problem 2	35	-
Problem 3	35	-
TOTAL	100	-

Problem 1 (30 points)

A beam is has the I-section shown with different flange widths. $f_{c}^{\prime}=4 \mathrm{ksi}$, and $f_{y}=60 \mathrm{ksi}$. Considering the full width of the flanges effective both in tension and compression and ignoring the contribution of steel in compression calculate:
1.1) The nominal flexural strength when the top reinforcement is in tension. ($\mathbf{1 2}$ points)
1.2) The nominal flexural strength when the bottom reinforcement is in tension. ($\mathbf{1 2}$ points)
1.3) What is the effective width of the flanges, according to ACI, for the two cases considered? ($\mathbf{6}$ points)

Problem 2 (35 points)

2.1) The beam ABC with rectangular cross section is considered. $f_{c}^{\prime}=4 \mathrm{ksi}$, and $f_{y}=60 \mathrm{ksi}$. The effective depth of the beam is $\mathrm{d}=12$."
2.1.1-Using \#4 stirrups design the required shear reinforcement of spans $A B$, and $B C$. The 14 kips load is already factored. Ignore the self weight of the beam. Assume that the flexural strength of the beam is adequate everywhere. Show a side view as well as a beam section sketch of your shear reinforcement design. ($\mathbf{2 3}$ points)
2.1.2 - Using the requirements of the ACI 318 code, determine whether the depth of the beam is adequate so that a detailed deflection calculation is not required. (4 points)

2.2) Calculate the maximum load P that the short cantilever with the rectangular section shown can resist. $f_{c}^{\prime}=4 \mathrm{ksi}$, and $f_{y}=60 \mathrm{ksi}$. Assume that that the flexural strength is adequate everywhere. (8 points)

Problem 3 (35 points)

For $f_{c}^{\prime}=4 \mathrm{ksi}$, and $f_{y}=60 \mathrm{ksi}$ check if the length of the splices as well as the development length of the bars is adequate. The loads shown are already factored. All the bar hooks shown are standard and satisfy ACI requirements. Contact splices are considered. The bars are uncoated and the concrete is normal weight. The nominal flexural strength of the beam section with $5 \# 9$ in tension is $\mathrm{M}_{\mathrm{n}}=552$ kips-ft. The nominal flexural strength of the beam section with $4 \# 7$ in tension is $M_{n}=282$ kips-ft. The effective depth of the beam is $d=27$ ".
Note: Do not check rules $\mathbf{3}$ to $\mathbf{7}$ for reinforcement cutoff.

PROBLEM 1

$f_{c}^{\prime}=4 \mathrm{ksi} \rightarrow B_{1}=0.05$
$f y=60 \mathrm{ksi}$

* USE FULL WIDTH OF FLANGES AS EFFECTIVE WIDTHS IN BOTH TENSION \& COMPRESSION

FIND:
1.1) NOMINAL FLEXURAL STRENGTH WHEN TOP IS IN TENSION

ASSUME BiCKtf (CASEI)
(2) FIND B,C \& CHECK ASSUMPTIUN

$$
\begin{aligned}
& \Sigma F=0 \Rightarrow A_{s f y}-0.85 f^{\prime}, \beta, c b f=0 \Rightarrow B_{c}=\frac{A_{s} f y}{0.45 f^{\prime} \cdot b_{f}} \\
& \beta_{1} C=\frac{3\left(0.79 \mathrm{in}^{2}\right)(60 \mathrm{hsi})}{0,05\left(44 s^{\prime}\right)\left(34^{\prime \prime}\right)}=1.23^{\prime \prime} \leq 5^{\prime \prime}=t f \sqrt{ } \text { ASSUMPTION OK }
\end{aligned}
$$

(3) FIND M_{n}

PMMPAD

$$
\begin{aligned}
& \sum M_{c_{c}}=0 \Rightarrow M_{n}=A_{s} f y\left(h-2.5^{\prime \prime}-\frac{\beta, c}{2}\right) \\
& M_{n}=3\left(0.79 i^{2}\right)\left(60 k_{s i}\right)\left(32^{\prime \prime}-2.5^{\prime \prime}-\left(1.23^{\prime \prime} / 2\right)\right) \\
& \Rightarrow M_{n}=4107 \text { kip-in }
\end{aligned}
$$

1.2) NOMINAL FLEXURAL STRENGTH WHEN BUTTUM IS IN CUMPRESSION

ASSUME $B, C \leq t f$ (CASEI)
(2) FIND B,C \& CHECK ASSUMPTIUN

$$
B_{1} c=\frac{A_{s} f y}{0.65 f^{\prime} b_{f}}=\frac{5\left(0.79 \mathrm{in}^{2}\right)\left(604 s^{\prime}\right)}{0.45(44 s i)\left(24^{\prime \prime}\right)}=2.90^{\prime \prime} \leq 5^{\prime \prime}=f_{f} \quad \text { ASSUMPTION OK }
$$

(3) FIND Mn

$$
\begin{aligned}
& \sum M_{u}=0 \Rightarrow M_{n}=A_{s f y}\left(h^{2}-2.5^{\prime \prime}-\frac{B_{1 c}}{2}\right)=5\left(0.79 n^{2}\right)\left(60 M_{s i}^{\prime}\right)\left(32^{\prime \prime}-2.5^{\prime \prime}-\left(\frac{290^{\prime \prime}}{2}\right)\right) \\
& \Rightarrow M_{n}=6647 \text { Kip-in } \\
& \begin{aligned}
C H E C K: \varepsilon_{S} & =\frac{\varepsilon_{s}(d-c)}{c}
\end{aligned} \begin{aligned}
c & =\frac{0.03\left(29.5^{11}-\frac{2.90^{\prime \prime}}{0.05}\right)}{2900^{\circ} / 0.95} \\
\varepsilon_{S} & =0.023
\end{aligned}
\end{aligned}
$$

1.3) WHAT IS EFFECTIVE FLANEE WIDTH FOR CASE ABOVE ACCORDINE TO THEACI?
\rightarrow FOR FLANGES IN TENSION \& COMPRESSION:

- ACI § $8.12 .2 ; b_{0} \leq \min \left\{\begin{array}{l}8+f \\ \frac{L}{2}\end{array} \quad\right.$ EFFECTIVE OVERHANG

FLANGE WIDTH

$$
\begin{aligned}
& \therefore b_{F}=\min \left\{\begin{array}{l}
L / 4 \\
b_{w}+16 t f \\
b_{w}+L_{c}
\end{array} \quad \text { SINCE } \varepsilon L_{C}\right. \text { NUTGVEN, ASSUME } \\
& b_{f} \leq 6^{\prime \prime}+16\left(5^{\prime \prime}\right)=86^{\prime \prime}
\end{aligned}
$$

\rightarrow FOR FLAMES IN COMPRESSION ONLY:

- ACt $89.12 .4: \quad b_{f} \leq 4 b_{w}=4\left(6^{\prime \prime}\right)=24^{\prime \prime}$

CASE 1.1: TOP IN TENSION, BUTTUM IN COMPRESSION

$$
\begin{aligned}
& \text { TENBIUN FLANLE: bf: } 24^{\prime \prime} \leq 86^{\prime \prime} \mathrm{V} \text { OK } \\
& \text { COMPRESSIUN FLANLE: bf: } 34^{\prime \prime} \leq 86^{\prime \prime} \mathrm{VOK} \\
&
\end{aligned}
$$

CASE 1.2: TOP IN COMP., BUT. IN TENSION:

$$
\begin{aligned}
& \text { TENSION FLANGE: } b_{F}=34^{\prime \prime} \leq 86 \vee O K \\
& \text { COMPRESSION FLANGE', } D_{F}=24^{\prime \prime} \leq 86 \mathrm{VOK} \\
& \leq 24^{\prime \prime} \mathrm{VOK}
\end{aligned}
$$

PRUBLEM 2)
2.1

$$
\begin{aligned}
& f_{c}^{\prime}=4 n s i \\
& f_{y}=60 k s i \\
& d=12^{\prime \prime}
\end{aligned}
$$

2.1.1) DESIGN REQ'D SHEAR REINF, FOR SPANS AB BC

* NO FLEXURAL DESIGN NECESSARY
* ienure sw

DRAW [V]

SPANAB
(1) FIND VU

Vued fromp.u.s. $=2 i^{k}$
(2)FIND V_{C} \& CHECK IF STIRRUPS REQD. FIND V_{S}

$$
\begin{aligned}
& V_{c}=2 \lambda \sqrt{f^{\prime} c} \text { bwd }=2(1.0)(\sqrt{4000 p s 1})\left(7^{\prime \prime}\right)\left(12^{\prime \prime}\right)=10,625 \mathrm{lb} \\
& \frac{Q V_{c}}{2}=\frac{0.75(1062566)}{2 \cdot 1000^{201} / \text { nie }}=3.98^{k}<21^{k}=V_{v} \rightarrow \text { NEED STIRRUPS } \\
& V_{S}=\frac{V_{u}}{\phi}-V_{c}=\frac{21^{k}}{0.75}-10.6^{k}=17.375^{k}
\end{aligned}
$$

\qquad
(3) GIVEN AV, FINDS FROM V_{3} EQ N

$$
\begin{aligned}
& A_{V}=\left(0.20 \mathrm{in}^{2}\right) \times 2 \text { legs }=0.40 \mathrm{in}^{2} \\
& V_{S}=A_{v f y} \frac{d}{s} \Rightarrow S=\frac{A_{V f y d}}{V_{S}}=\frac{\left(0.40 \mathrm{in}^{2}\right)(60 \mathrm{nsi})\left(12^{11}\right)}{17.375^{k}} \cong 16.5^{11}
\end{aligned}
$$

(4) CHECH $S \leq S_{\text {max }}$

$$
\begin{aligned}
& \text { 4. } \sqrt[f^{\prime} L]{ } \text { bud }=4 \sqrt{4000 p^{\prime}}\left(7^{\prime \prime}\right)\left(12^{\prime \prime}\right) / 1000=21.25^{k} \\
& V_{S} \leq 4 \sqrt{f^{\prime} L} \text { b wd } \because S_{\text {max }}=\min \left\{\begin{array}{l}
d / 2=12^{\prime \prime} / 2=6^{\prime \prime} \\
24^{\prime \prime}
\end{array}\right. \\
& \text { S\&S } 4 \text { max } \therefore \text { SET } S \cong 6^{\prime \prime}
\end{aligned}
$$

SPAN BC
(1) FIND V_{0}

Vie a from F.O.s. $=14^{4}$
(2) FIND V_{C} \&े CHECK IF STIRRUPS ARE REQD, FIMDVS

$$
\begin{aligned}
& V_{c}=2 \lambda \sqrt{f_{c}} b_{w} d=10.6^{k} \\
& \frac{d V_{c}}{2}=3.90^{k}<14^{k} \rightarrow \text { NEED STIRRUPS } \\
& V_{S}=\frac{V_{v}}{\phi}-V_{c}=\frac{14^{4}}{0.75}-10.6^{k}=0.04^{n}
\end{aligned}
$$

(3) GIVEN AV, FINDS

$$
\begin{aligned}
& A_{v}=0.40 \mathrm{~m}^{2} \\
& S=\frac{A_{v} f y d}{V_{s}}=\frac{\left(0.40 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(12^{\prime \prime}\right)}{8.04^{4}} \approx 27^{\prime \prime}
\end{aligned}
$$

(4) CHECK $S ⿰ S_{\text {max }}$

$$
4 \sqrt{f^{\prime} \mathrm{L}} \text { bod }=21.25^{4}
$$

$$
V_{S} \leq 4 \sqrt{f^{\prime}} \text { bud } \because s_{\text {max }}=\min \left\{\begin{array}{l}
d / 2=12^{\prime \prime} / 2=6^{\prime \prime} \\
24^{\prime \prime}
\end{array}\right.
$$

$$
S \notin s_{\max } \Rightarrow \therefore \text { SET } S \cong 6^{\prime \prime}
$$

SECTIUN arA

21.2) DUES THE BFAM HAVE ADEQUATE THICKNESS S.T. DEFLECTIUN CALL NUT REQ'D?

CANTILEVER SECTION $\therefore h_{\text {min }}=\frac{R}{8}=\frac{6^{\prime}\left(12^{\prime \prime \prime}\right)}{8}=9^{\prime \prime} \leq 14^{\prime \prime}=h \vee O K$
2.2) WHAT IS MAX P THIS CANTILEVER CAN CARRY CONSIDERINE SHEAR REQMENTS ONLY?

$V_{0} \leq \phi V_{n}^{\prime}$.

$$
\begin{aligned}
& V_{v}=P \\
& v_{n}=v_{c}+v_{s} \\
& \Rightarrow P \leq \phi\left(V_{c}+V_{s}\right) \\
& v_{c}=2 \lambda \sqrt{f^{\prime} c} b_{w d}=7.2^{k} \\
& V_{s}=A \vee f y \frac{d}{s}=\frac{\left(0.40 \mathrm{in}^{2}\right)(\text { buns })(9.5)}{4^{11}}=57^{4} \neq 20.0^{4} \quad \therefore \text { SET } V_{S}=20.0^{4} \\
& p \leq \phi\left(v_{L}+v_{3}\right)=0.75\left(7,2^{k}+28.10^{k}\right) \\
& \Rightarrow P_{\text {max }}=27 \mathrm{kips}
\end{aligned}
$$

NO POS. MOMENT \therefore ONLY CHECK NEG. REINF, BARS
(1) CHECK IF $5^{\#} 9$ BARS IS ADEQUATE FUR MAX, MOMENT
(1) $M_{n}=0.9\left(552^{n+1 t}\right)=497 \geq 440 K_{\text {ip }}-f t=M_{U} V O K$
(2) RULE \#1. BARS MUST EXTEND Max $\{d, 12 d b\}$ PAST THEORETICAL CUTOFF PT.
$\phi M_{n}^{4^{77}}=0.9(292 u-f t)=254 \mathrm{kip}-\mathrm{ft}$
$M(x)=440$ n.p-ft- $20^{4} x$ (X MEASURED FROM PT. OF MAX $M-M J$)
$254^{\mathrm{k}-\mathrm{ft}}=440 \mathrm{~K}_{1 \mathrm{p}}-\mathrm{ft}-20^{4} x \Rightarrow x=9,3^{\prime}$ FROM PT, OF MAX $د$ TIES
*THEORET. CUT-UFFPT. $+\max \left\{d, 12 d b^{3}\right\}=9.3^{\prime}\left(12^{\prime \prime} 1\right)+\max \left\{27^{\prime \prime}, 12\left(9 / 4^{\prime \prime}\right)\right\}$

$$
=139.6^{\prime \prime}<144+60=204 \text { " ok }
$$

see also the supplement included in the last page

Supplement - problem 3 - midterm 1-Fall 2011

Assumption close to reality: Increase of tension force due to tension shift:
$\mathrm{T}=\mathrm{M} / 0.9 \mathrm{~d}, \mathrm{~d}=27^{\prime \prime}\left(2.25^{\prime}\right) \quad \mathrm{M}_{x=\mathrm{d}} / 0.9 \mathrm{~d}=(2.25 / 22)^{*} 440 /(0.9 * 2.25)=22.2 \mathrm{kips}$
$M_{x=12^{\prime}}=240$ kips-ft $<0.9 * 282=254$
$\mathrm{M}_{\mathrm{x}=14.25^{\prime}}=285 \mathrm{kips}-\mathrm{ft}$

