Second Midterm Examination Wednesday April 6 2011 Closed Books and Closed Notes

Question 1 Planar Motion of a System of Two Particles (20 Points)

As shown in Figure 1, a particle of mass m_1 is at rest and is attached to a fixed point O by a linear spring of stiffness K and unstretched length L_0 . At time t = 0, a particle of mass m_2 traveling with a velocity vector $v_0\mathbf{E}_x$ impacts the particle of mass m_1 . After the collision both particles adhere to each other, and can be considered as a particle of mass $m_1 + m_2$.

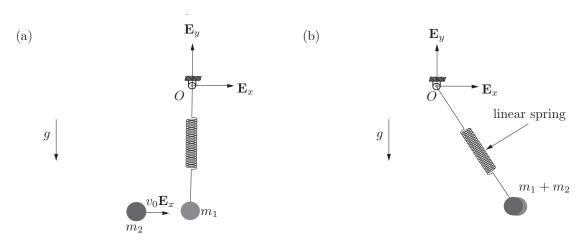


Figure 1: A system of two particles: (a) Prior to impact at t = 0, and (b) following the impact.

(a) (4 Points) Starting from the representation

$$\mathbf{r}_1 = r\mathbf{e}_r,\tag{1}$$

where \mathbf{e}_r is a unit vector pointing from O along the spring to m_1 , establish representations for the linear momentum \mathbf{G} , kinetic energy T, and acceleration \mathbf{a} of the particle of mass $m_1 + m_2$ after the collision.

(b) (4 Points) Show that the velocities of the particle of mass $m_1 + m_2$ immediately following the collision are

$$\dot{r}(t=0) = 0, \qquad r_0 \dot{\theta}(t=0) = \frac{m_2}{m_1 + m_2} v_0.$$
 (2)

- (c) (4 Points) Verify that the kinetic energy of the system is not conserved during the collision.
- (d) (4 Points) Draw a freebody diagram of the particle of mass m_1+m_2 following the collision. Give a clear expression for the spring force acting on the particle.
- (e) (4 Points) Consider the system after impact. Starting from $T = \mathbf{F} \cdot \mathbf{v}$ for a single particle, show that the total energy E of the particle of mass $m_1 + m_2$ is conserved. In your solution, give a clear expression for E.

Question 2 A Double Pendulum (30 Points)

As shown in Figure 2, a mechanical system consists of two particles. The particle of mass m_2 is connected using a pin joint and a rod of length L_1 to the particle of mass m_1 . The particle of mass m_1 is attached by linear spring of stiffness K and unstretched length L_0 to a fixed point O. Both particles move on a smooth vertical plane.

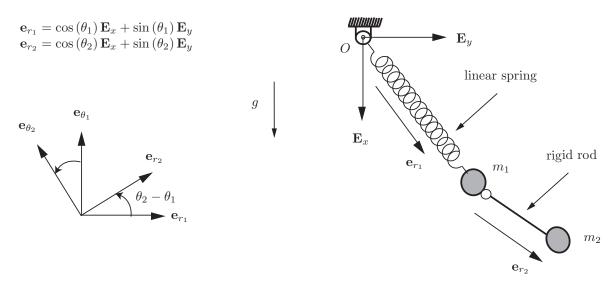


Figure 2: A system of two particles in motion on a smooth vertical plane.

(a) (4 Points) Starting from the representations for the position vectors of m_1 and m_2 :

$$\mathbf{r}_1 = r\mathbf{e}_{r_1}, \qquad \mathbf{r}_2 = \mathbf{r}_1 + L_1\mathbf{e}_{r_2}, \tag{3}$$

establish an expression for the position vector \mathbf{r} of the center of mass of the system. In addition, establish an expression for the linear momentum \mathbf{G} of the system.

(b) (8 Points) Show that the kinetic energy of the system has the representation

$$T = \frac{m_1 + m_2}{2} \left(\dot{r}^2 + r^2 \dot{\theta}_1^2 \right) + \frac{m_2}{2} L_1^2 \dot{\theta}_2^2 + \text{missing terms.}$$
 (4)

For full credit supply the missing terms. (Hint: Notice the definition of \mathbf{e}_{θ_2} shown in Figure 2.)

- (c) (6 Points) Draw 3 free-body diagrams: one for each of the individual particles and one for the system of particles. In your solution, give clear expressions for the spring force and tension force.
- (d) (7 Points) Using the angular momentum theorem, show that $\dot{\mathbf{H}}_O \cdot \mathbf{E}_z$ depends entirely on the moments due to the gravitational forces on the particles. (Hint: use the identity $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{E}_z = (\mathbf{b} \times \mathbf{E}_z) \cdot \mathbf{a}$).
- (e) $(5 \ Points)$ Give an expression for the total energy E of the system of particles. Then, starting from the work-energy theorem for a system of particles,

$$\dot{E} = \mathbf{F}_{nc_1} \cdot \mathbf{v}_1 + \mathbf{F}_{nc_2} \cdot \mathbf{v}_2,\tag{5}$$

show that E is conserved.