Department of Mechanical Engineering
 University of California at Berkeley
 ME 104 Engineering Mechanics II
 Spring Semester 2007

Instructor: F. Ma
Midterm Examination No. 2
April 6, 2007
The examination has a duration of 50 minutes.
Answer ALL questions.
All questions carry the same weight.

1. Two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1200 kg and car B has a mass of 1600 kg . The cars become entangled and move off together with a common velocity v^{\prime} in the direction indicated. If car A was traveling $50 \mathrm{~km} / \mathrm{h}$ at the instant of impact, compute the corresponding velocity of car B just before impact.

2. Ball B, of mass m_{B}, is suspended from a cord of length l attached to cart A, of mass m_{A}, which can roll freely on a frictionless horizontal track. If the ball is given an initial horizontal velocity v_{0} while the cart is at rest, determine (a) the velocity of B as it reaches its maximum elevation, (b) the maximum vertical distance h through which B will rise. It is assumed that $v_{0}^{2}<2 g l$.

3. The smaller cylinder rolls on the stationary larger cylinder without slipping. The speed of the center of the rolling cylinder is constant. Determine the acceleration of the point of contact A and the point B for the position shown.

4. This is a plastic impact with $e=0$. Linear momentum is conserved.

$$
\begin{array}{ll}
& \Delta G_{x}=0 \\
\Rightarrow & m_{B} v_{B}+0=\left(m_{A}+m_{B}\right) v^{\prime} \sin 30^{\circ} \\
\Rightarrow & 1600 v_{B}=2800 v^{\prime}(0.5) \\
& \Delta G_{y}=0 \\
\Rightarrow \quad & m_{A} v_{A}+0=\left(m_{A}+m_{B}\right) v^{\prime} \cos 30^{\circ} \\
\Rightarrow \quad & 1200(50)=2800 v^{\prime}(0.866) \\
\Rightarrow \quad & v^{\prime}=24.7 \tag{2}
\end{array}
$$

From equation (1),

$$
v_{B}=21.7 \mathrm{~km} / \mathrm{h}
$$

2. (a) When ball B reaches its maximum elevation in position 2 , its velocity $\left(\mathbf{v}_{B / A}\right)_{2}$ relative to cart A is zero. Since A is translating horizontally,

$$
\left(\mathbf{v}_{B}\right)_{2}=\left(\mathbf{v}_{A}\right)_{2}+\left(\mathbf{v}_{B / A}\right)_{2}=\left(\mathbf{v}_{A}\right)_{2}
$$

Since system linear momentum is conserved,

$$
\begin{aligned}
\Delta G_{x}=0 & \Rightarrow \quad m_{B} v_{0}=\left(m_{A}+m_{B}\right)\left(v_{B}\right)_{2} \\
& \Rightarrow \quad\left(v_{B}\right)_{2}=\frac{m_{B}}{m_{A}+m_{B}} v_{0}
\end{aligned}
$$

Position 1

Position 2
(b) The energy of the system is conserved.

$$
\begin{aligned}
& \Delta T+\Delta V_{g}=0 \\
\Rightarrow \quad & \frac{1}{2} m_{A}\left(v_{A}\right)_{2}^{2}+\frac{1}{2} m_{B}\left(v_{B}\right)_{2}^{2}-\frac{1}{2} m_{B} v_{0}^{2}+m_{A} g l+m_{B} g h-m_{A} g l=0 \\
\Rightarrow \quad & h=\frac{v_{0}^{2}}{2 g}-\frac{m_{A}+m_{B}}{m_{B}} \frac{\left(v_{B}\right)_{2}^{2}}{2 g}
\end{aligned}
$$

Using the expression of $\left(v_{B}\right)_{2}$ found earlier,

$$
h=\frac{m_{A}}{m_{A}+m_{B}} \frac{v_{0}^{2}}{2 g}
$$

The assumption $v_{0}^{2}<2 g l$ ensures that

$$
h=\frac{m_{A}}{m_{A}+m_{B}} \frac{v_{0}^{2}}{2 g}<\frac{m_{A} l}{m_{A}+m_{B}}<l
$$

3. The rolling cylinder has instantaneous center located at A, and its angular velocity and acceleration are given by

$$
\begin{aligned}
& \omega=\frac{v_{O}}{r} \\
& \alpha=\dot{\omega}=0
\end{aligned}
$$

For two points A and O on the rolling cylinder,

$$
\begin{aligned}
\mathbf{a}_{A} & =\mathbf{a}_{O}+\boldsymbol{\omega}_{A O} \times\left(\boldsymbol{\omega}_{A O} \times \mathbf{r}_{A / O}\right)+\boldsymbol{\alpha}_{A O} \times \mathbf{r}_{A / O} \\
& =-\frac{v_{O}^{2}}{R+r} \mathbf{j}+(-\omega \mathbf{k}) \times[(-\omega \mathbf{k}) \times(-r \mathbf{j})]=-\frac{v_{O}^{2}}{R+r} \mathbf{j}+r \omega^{2} \mathbf{j} \\
& =\frac{R}{r(R+r)} v_{O}^{2} \mathbf{j}
\end{aligned}
$$

Between A and B on the rolling cylinder,

$$
\begin{aligned}
\mathbf{a}_{B} & =\mathbf{a}_{A}+\boldsymbol{\omega}_{B A} \times\left(\boldsymbol{\omega}_{B A} \times \mathbf{r}_{B / A}\right)+\boldsymbol{\alpha}_{B A} \times \mathbf{r}_{B / A} \\
& =\frac{R v_{O}^{2}}{r(R+r)} \mathbf{j}+(-\omega \mathbf{k}) \times[(-\omega \mathbf{k}) \times(2 r \mathbf{j})]=\frac{R v_{O}^{2}}{r(R+r)} \mathbf{j}-2 r \omega^{2} \mathbf{j} \\
& =-\frac{R+2 r}{r(R+r)} v_{O}^{2} \mathbf{j}
\end{aligned}
$$

