
CS 70 First Midterm 10 July 2012

NAME (1 pt):

SID (1 pt):

TA (1 pt):

Name of Neighbor to your left (1 pt):

Name of Neighbor to your right (1 pt):

Instructions: This is a closed book, closed calculator, closed computer, closed network, open
brain exam, but you are permitted a 1 page, double-sided set of notes, large enough to read
without a magnifying glass.

You get one point each for filling in the 5 lines at the top of this page.
Write all your answers on this exam. If you need scratch paper, ask for it, write your name

on each sheet, and attach it when you turn it in (we have a stapler).

1
2
3
4
5
6

Total

1
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Question 1 (20 points) Potpourri.

1.1 (14 points). True or False
For each of the following propositions, circle either T if it is always true, F if it is always
false. You do not have to justify your answer. We let N = {0, 1, 2, ...} denote the
non-negative integers, Z+ = {1, 2, 3, ...} denote the positive integers.

T F (p ∧ ¬q) ∧ (¬p ∨ q) ∧ r
Answer: False
We can see this is false by looking at the truth table:

p q r p ∧ ¬q ∧ (¬p ∨ q) ∧ r

T T T F
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

T F ∀x, y ∈ N, z ∈ Z+ .[2x ≡ 2y (mod z) =⇒ x ≡ y (mod z)].
Answer: False
Counterexample, let x = 3, y = 7, z = 8. Then, 2(3) ≡ 2(7) (mod 8). However
3 �≡ 7 (mod 8)

T F Given d pairs (x1, y1), ..., (xd, yd), with all the xi distinct, there is a unique polyno-
mial p(x) of degree d such that p(xi) = yi for 1 ≤ i ≤ d
Answer: False
There is a unique polynomial of degree d− 1. There exists infinitely many polyno-
mial function of degree d.

T F (∀x ∈ N)(∃y ∈ N)(x6 = y2)
Answer: True
Simply take y = x3.

T F In a stable marriage instance, if a man and women have each other last on their
respective lists, they are guaranteed not to be paired in any stable pairing.
Answer: False

T F ∀x, y ∈ N, if 9x ≡ y (mod 26), then x ≡ 3y (mod 26).
Answer: True

T F ∀x, y ∈ N, gcd(2x, 3y) = gcd(x, y).
Answer: False
Consider x = 3, y = 2.
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1.2 (6 points). Prove or disprove the following proposition:
If every even number greater than 2 is the sum of 2 prime numbers, then every odd
numbers greater than 7 is the sum of 3 prime numbers.

Answer: This proposition is true. Consider some odd number, o, greater than 7. We
can express o as the sum of 3 and some even number e that is greater than 4, o = 3+ e.
If we can express e as the sum of 2 primes, p and q then o = 3 + p+ q. (Note: 1 is not
considered a prime number).
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Question 2 (20 points) Induction: Poor Valentine.
A school teacher is preparing for Valentine’s Day. She has instructed each student to make a
Valentine. Then, to ensure fairness, she will have the everyone play the following game:
The students all wander randomly around the room for ten minutes, then gives his or her
Valentine to the student closest to them. To further ensure fairness, the teacher adds the fol-
lowing rule: each student must keep every other student a different distance away from them.

Show that if the teacher has an odd number of students, one of them will not receive a
Valentine. You may assume the class has more than one student.

2.1 (3 points). State and prove the base case for the induction.

Answer: Let P (n) = ”for a class of n students, one will not receive a Valentine at the
end of the game.” We will prove by induction on n, the number of students, that, if there
are an odd number of students, one will not receive a Valentine. Formally, we will show
that ∀n ∈ N.(n is odd =⇒ P (n)).
Base Case: n = 3.
Let s1, s2, s3 be the students. After wandering around for ten minutes, WLOG, assume
s2 is the closest student to s1. Because we assume that each student is a different distance
away from s1, we know that s2 is unique. This means that s1 will give their Valentine
to s2. Since distance is symmetric, s1 will also be the closest student to s2, and thus
will give their Valentine to s1. This means that s3 cannot receive a Valentine, since all
possible Valentine’s he or she could have received have already been given to another
student.

2.2 (3 points). State the induction hypothesis.

Answer: Suppose for some odd k ∈ N, P (k).

2.3 (14 points). Complete the proof by stating and proving the induction step.

Answer: Consider a class of k+2 students, s1, s2, . . . , sk+2. Let sx be the student closest
to s1 at the end of the game. This means that s1 and sx will exchange Valentines. Us-
ing our IH, we know that out of the remaining k students, one will not receive a Valentine.

Therefore, for a class of n students, if n is odd, one student will not receive a Valentine.
�
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Question 3 (20 points) Stable Marriage.
For each of the following questions,

i) Fill in the tables with an example preference list, give a stable pairing for n = 3, and
show that your example is correct.

ii) Generalize your example to an arbitrary n and show that your generalization is correct.
You do not need to provide the stable pairing for your generalization.

3.1 (10 points). Consider a stable marriage instance where Traditional Propose & Reject
Algorithm returns a pairing which is optimal for both male and female AND terminates
after exactly 1 day.

Answer:

Man highest→lowest

1 B A C

2 C B A

3 A C B

Men’s preference list

Woman highest→lowest

A 3 2 1

B 1 3 2

C 2 1 3

Women’s preference list

At the first day, there are no conflicts so algorithm terminates with all three cou-
ples. Running the Traditional Propose & Reject Algorithm where all men proposes,
we get (1, B), (2, C), (3, A). Likewise, when female proposes, we get the same pairing
(B, 1), (C, 2), (A, 3)

In general, with n men and n women, we set up the preference list such that for all
1 ≤ i ≤ n, mi has wi first on his preference list and wi has mi first on her preference
list. Then, if we run 1 iteration of stable marriage every mi will propose to wi, therefore,
every woman will get exactly one proposal. The algorithm will terminate after that step
and generate a pairing, T . We know that ∀i ∈ [1, 2, ...n].(mi, wi) ∈ T which tells us that
this pairing is both male and female optimal (they both got their first choice).
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3.2 (10 points). Consider a stable marriage instance where Traditional Propose & Reject
Algorithm returns a “female optimal” pairing AND terminates after exactly n days.

Answer:

Man highest→lowest

1 A B C

2 A B C

3 A C B

Men’s preference list

Woman highest→lowest

A 1 2 3

B 1 2 3

C 1 2 3

Women’s preference list

Let’s look at the pairing output by the algorithm, then convince ourselves that it is
female optimal.

Days Women Proposals

1 A 1,2,3
B -
C -

2 A 1
B 2,3
C -

3 A 1
B 2
C 3

This will output the pairing (1, A), (2, B), (3, C). We see that it is female optimal as fol-
lows: we know woman A is with her optimal partner because 1 is her first choice. Now,
consider a pairing where woman B is paired with man 1, who she likes better than her
spouse. In this case (1, A) will become a rogue couple so the couple (1, B) cannot exist
in a stable pairing. So we know the female optimal pairing has the couples (1, A) and
(2, B). Therefore, we can say the complete female optimal pairing is (1, A), (2, B), (3, C).

In the case where the women are proposing, this works as long as all the women have
the same preference list. In every iteration i, n− i+ 1 women will propose to the same
man, mi. One will get a maybe and the rejected n− i women will cross mi off their lists
and propose to mi+1 the next day.

Note, we can use a similar generalization even if the men are proposing. Consider the case
where every wi has the preference list, {m1,m2, ...,mn} and every mi has the preference
list {w1, w2, ..., wn}. Running the Traditional Propose & Reject Algorithm still takes n
iterations and returns a pairing T where, ∀i ∈ [1, 2, ...n].(mi, wi) ∈ T . But how are we
sure it is female optimal? Running the Traditional Propose & Reject Algorithm when
the women propose will result in the exact same pairing and is guaranteed to output a
female optimal pairing. Therefore, this preference list is both male and female optimal
and running the Traditional Propose & Reject Algorithm will take n days regardless of
who is doing the proposing.
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Question 4 (15 points) Modular Arithmetic.

4.1 (10 points). Use the extended gcd algorithm to find gcd(47, 20) and find the numbers x
and y where 47 ∗ x+ 20 ∗ y = gcd(47, 20)

Answer:

e-gcd(47,20)
calls e-gcd(20,7)
calls e-gcd(7,6)
calls e-gcd(6,1)
calls e-gcd(1,0)
returns 1= 1*0+0*0
returns 1 = 6*0 + 1*1
returns 1 = 7*1 + 6*(-1)
returns 1 = 20*(-1) + 7*3
returns 1 = 47*3 + 20*(-7)

4.2 (5 points). Find a value for x that solves 47x ≡ 8 (mod 20). Show your work.

Answer: From 4.1 we see that 47−1 ≡ 3 (mod 20). Multiplying both sides by 47−1 we
get

x ≡ 47−1 ∗ 8 (mod 20)

≡ 3 ∗ 8 (mod 20)

≡ 24 (mod 20)

≡ 4 (mod 20)
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Question 5 (15 points) RSA.

5.1 (5 points). Alice wants to send Bob a message m = 5 using his public key (n = 26, e =
11). What cipher text E(m) will Alice send?

Answer:

51 ≡ 5 mod 26

52 ≡ 25 mod 26

≡ −1 mod 26

54 ≡ (−1)2 mod 26

≡ 1 mod 26

58 ≡ 1 mod 26

511 ≡ 58 · 52 · 51 mod 26

≡ 1 · −1 · 5 mod 26

≡ −5 mod 26

≡ 21 mod 26

5.2 (10 points). Is Two Always Better than One?
One day, Joe Hacker decides that he wants to improve the security of RSA. He uses
N = pq as usual, but has each person send a message with a different exponent, e.

Suppose Alice and Bob each send the same message encrypted with their respective
public keys, (N ,e1) and (N,e2), and that Eve intercepts both encrypted messages,
c1 = me1 (mod N) and c2 = me2 (mod N).

Show how Eve can use c1, c2, and both public keys to recover the original message m if
e1 and e2 are relatively prime. (Hint: Consider using egcd)

Answer: Run the extended GCD on e1, e2, obtaining coefficients r, s such that re1 +
se2 = gcd(e1, e2). The RHS is one, since the keys are relatively prime. So if we compute:

[me1 ]r × [me2 ]s = me1r+e2s = m1
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Question 6 (20 points) Error Correcting Codes.

6.1 (5 points). Evaluate f(x) = 3x2 − x+ 1 on every point of GF(5).

Answer:

x f(x)

0 1
1 3
2 1
3 0
4 0

6.2 (5 points). Tired of always doing Lagrange interpolation by hand, you stumble across
someone’s (poorly documented) code to do it for you. However, to your frustration, you
find that it has an off-by-one error! For example, if you give it the points (1, 3), (2, 2),
and (3, 4), it would instead interpolate the points (1, 4), (2, 3), and (3, 5) (formally, when
asked to interpolate a polynomial over GF (p) through some point (x, y), it will instead
interpolate a polynomial through (x, y + 1)).
But being the clever hacker that you are, you realize that, without touching any of the
code itself, for any g(x) that the program returns, you can find a new polynomial p(x)
that is the one you originally wanted.

Describe how to construct p(x) using g(x). Justify your answer.

(Specifically, we are asking: given a polynomial g(x) of degree n−1 over GF (p) through
points (x1, y1 + 1), (x2, y2 + 1), . . . , (xn, yn + 1), find a polynomial p(x) of degree n − 1
over GF (p) through points (x1, y1), (x2, y2), . . . , (xn, yn)).

Answer:
p(x) ≡ g(x)− 1 (mod p)

For ever point xi, we know g(xi) ≡ yi+1 (mod p). By subtracting 1 from both sides we
can see that for every xi, g(xi)− 1 ≡ yi (mod p). So if we take the polynomial g(x) and
subtract 1 from it we are guaranteed that it will pass through every (xi, yi).
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6.3 (10 points). After fiddling with the program in part 6.2 you end up with the following
quadratic (degree 2) polynomials over GF (p):

w1(x) which passes through the points (1, 3), (2, 1), and (3, 1)

w2(x) which passes through the points (1, 1), (2, 2), and (3, 1)

w3(x) which passes through the points (1, 1), (2, 1), and (3, 4)

Describe how to use these polynomials to find the quadratic polynomial p(x) over GF (p)
that passes through the points (1, 3), (2, 2), and (3, 4). Express your answer in terms of
w1(x), w2(x), and w3(x).

Answer: For each polynomial w1(x), w2(x), and w3(x) you can subtract 1 from each so
now 2 points are the roots but it goes through the wrong y value for the x that is not a
root. So you have to rescale each polynomial ie w1(x) goes through (1,3)(2,1)(3,1)

w1(x)− 1 goes through (1,2)(2,0)(3,0)
2−1[w1(x)− 1] goes through (1,1)(2,0)(3,0)
3 ∗ 2−1[w1(x)− 1] goes through (1,3)(2,0)(3,0)

w2(x)− 1 goes through (1,0)(2,1)(3,0)
2[w2(x)− 1] goes through (1,0)(2,2)(3,0)

w3(x)− 1 goes through (1,0)(2,0)(3,3)
3−1[w3(x)− 1] goes through (1,0)(2,0)(3,1)
4 ∗ 3−1[w3(x)− 1] goes through (1,0)(2,0)(3,4)

Summing these functions we get:

p(x) = 3 ∗ 2−1[w1(x)− 1] + 2[w2(x)− 1] + 4 ∗ 3−1[w3(x)− 1]
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