Math 54 Final Exam

This was a 3-hour exam, 12:30–3:30PM. There were 60 points for eight questions. Problem 1 consisted of 11 true–false questions, each worth 1 point. Problems 2–8 had point values 6, 8, 9, 6, 6, 8 and 6.

I think that it was a successful exam: people seemed happy, and there weren't problems that were obviously ambiguous. The only misprint that I know about was in the last problem, where "diagonal" should replace "diagonalizable." We announced this in the exam room.

1. For each statement below, write TRUE or FALSE to the left of the statement. You are not required to justify your reasoning:

If A is a square invertible matrix, then A and A^{-1} have the same rank.

If A is an $m \times n$ matrix and if b is in \mathbb{R}^m , there is a unique $x \in \mathbb{R}^n$ for which ||Ax - b|| is smallest.

If A is an $n \times n$ matrix, and if v and w in \mathbb{R}^n satisfy Av = 2v, Aw = 3w, then $v \cdot w = 0$.

If the dimensions of the null spaces of a matrix and its transpose are equal, then the matrix is square.

If A is a 2×2 matrix, then -1 cannot be an eigenvalue of A^2 .

I liked the linear algebra portion of this course more than the differential equations portion.

If four linearly independent vectors lie in $\text{Span}(\{w_1, \ldots, w_t\})$, then t must be at least 4.

If B is invertible, then the column spaces of A and AB are equal.

If A is a matrix, the row spaces of A and $A^T A$ are equal.

If two symmetric $n \times n$ matrices A and B have the same eigenvalues, then A = B.

If the characteristic polynomial of A is $(\lambda - 1)(\lambda + 1)(\lambda - 3)^2$, then A is necessarily diagonalizable.

2. Consider the vectors $v_1 = [0, 1, 0, 1, 0]$, $v_2 = [0, 1, 1, 0, 0]$, $v_3 = [0, 1, 0, 1, 1]$ in \mathbb{R}^5 . Find w_1, w_2, w_3 in \mathbb{R}^5 such that $w_i \cdot w_j = 0$ for $i \neq j$ (*i* and *j* between 1 and 3), and such that $\operatorname{Span}(\{w_1, \dots, w_i\}) = \operatorname{Span}(\{v_1, \dots, v_i\})$ for i = 1, 2, 3.

3. Find $x_1(t)$ and $x_2(t)$ such that

$$x_1'(t) = -2x_1(t) + 2x_2(t) \qquad x_2'(t) = +2x_1(t) + x_2(t)$$

and $x_1(0) = -1$, $x_2(0) = 3$.

4. Let A be the matrix $\begin{bmatrix} 1 & 1 & 3 & 2 \\ 3 & 1 & 1 & 0 \\ 4 & 2 & 4 & 2 \end{bmatrix}$. Find bases for each of the following: the null space of A; the row space of A; the column space of A.

5. The theory of Fourier series implies that there are numbers a_0, a_1, a_2, \ldots such that

$$|\sin x| = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos mx$$

for all real numbers x. Find a_0 , a_1 , a_2 and a_3 . (It may be helpful to recall the formula $\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$ from trigonometry.)

6. Find u(x,t) that satisfies the equation $25u_{xx} = u_t$ on the region $0 < x < \pi$, t > 0 as well as the boundary conditions $u(0,t) = u(\pi,t) = 0$ for t > 0 and $u(x,0) = \sin 3x - \sin 4x$ for $0 \le x \le \pi$.

7. Suppose that v_1, \ldots, v_n are vectors in \mathbb{R}^n and that A is an $n \times n$ matrix. If Av_1, \ldots, Av_n form a basis of \mathbb{R}^n , show that v_1, \ldots, v_n form a basis of \mathbb{R}^n and that A is invertible.

8. Let $v_1 = \begin{bmatrix} 0 \\ 5 \\ -2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 9 \\ 8 \\ 7 \end{bmatrix}$. Suppose that A is the 3 × 3 matrix for which $Av_1 = v_1$, $Av_2 = 0$, $Av_3 = 5v_3$. Find an invertible matrix S and a diagonalizable matrix Λ such that $A = S\Lambda S^{-1}$.