
Math 54 Professor K. A. Ribet
Final Exam May 18, 2007

This was a 3-hour exam, 12:30–3:30PM. There were 60 points for eight questions. Prob-
lem 1 consisted of 11 true–false questions, each worth 1 point. Problems 2–8 had point
values 6, 8, 9, 6, 6, 8 and6.

I think that it was a successful exam: people seemed happy, and there weren’t problems
that were obviously ambiguous. The only misprint that I know about was in the last
problem, where “diagonal” should replace “diagonalizable.” We announced this in the
exam room.

1. For each statement below, write TRUE or FALSE to the left of the statement. You are
not required to justify your reasoning:

If A is a square invertible matrix, then A and A−1 have the same rank.

True: the rank is the size of the matrix A in both cases.

If A is an m× n matrix and if b is in Rm, there is a unique x ∈ Rn for which ‖Ax− b‖ is
smallest.

False: for example, A could be the 0-matrix and b could be 0. Then the length is smallest
(namely 0) for all x.

If A is an n × n matrix, and if v and w in Rn satisfy Av = 2v, Aw = 3w, then v · w = 0.

False: it’s not true in general that eigenvectors for different eigenvalues are perpendicular.
We proved this for symmetric matrices, however.

If the dimensions of the null spaces of a matrix and its transpose are equal, then the matrix
is square.

True by the rank-nullity theorem, since a matrix and its transpose have the same rank.

If A is a 2 × 2 matrix, then −1 cannot be an eigenvalue of A2.

False. For example, if A =
[

0 1
−1 0

]
, then A2 = −I2.

I liked the linear algebra portion of this course more than the differential equations portion.

This was supposed to be a “free point,” but students who gave no answer probably won’t
get their empty answer marked correct.



If four linearly independent vectors lie in Span({w1, . . . , wt }), then t must be at least 4.

Yes, this is true. The dimension of the span of t different vectors is at most t, whereas the
dimension of a space containing 4 linearly independent vectors is at least 4.

If B is invertible, then the column spaces of A and AB are equal.

True. The column space of A is the set of all Ax, whereas the column space of AB is the
set of all ABy. (Here, x and y are vectors of length n.) Every By is an x. Because B is
assumed to be invertible, every x is a By.

If A is a matrix, the row spaces of A and AT A are equal.

Just as the column space of AB is always contained in the column space of A, so the row
space of BA is always contained in the row space of A. In particular, the row space of
AT A is contained in the row space of A. The two spaces are therefore equal if and only if
they have the same dimension. You may recall (p. 258 of the linear algebra book) that the
null space of AT A is equal to the null space of A; this follows from a computation with
the dot product. A consequence is that AT A and A have equal ranks. Accordingly, the
two row spaces have the same dimension and the assertion is true.

If two symmetric n × n matrices A and B have the same eigenvalues, then A = B.

False. For example the diagonal matrix with diagonal entries 1 and 2 has the same eigen-
values as the diagonal matrix with entries 2 and 1 (i.e., in the other order). Both are
symmetric; they have the same eigenvalues; they’re different.

If the characteristic polynomial of A is (λ− 1)(λ + 1)(λ− 3)2, then A is necessarily diago-
nalizable.

False because of the repeated eigenvalue.

2. Consider the vectors v1 = [0, 1, 0, 1, 0], v2 = [0, 1, 1, 0, 0], v3 = [0, 1, 0, 1, 1] in R5. Find
w1, w2, w3 in R5 such that wi · wj = 0 for i �= j (i and j between 1 and 3), and such that
Span({w1, · · · , wi }) = Span({ v1, · · · , vi }) for i = 1, 2, 3.

You get the ws from the vs by applying a straight Gram–Schmidt operation. Take w1 = v1.

It looks as if w2 can be (0,
1
2
, 1,−1

2
, 0) and w3 can be (0, 0, 0, 0, 1).

3. Find x1(t) and x2(t) such that

x′
1(t) = −2x1(t) + 2x2(t) x′

2(t) = +2x1(t) + x2(t)

and x1(0) = −1, x2(0) = 3.
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This is a straightforward x′ = Ax problem. The matrix A is
[−2 2

2 1

]
, whose eigenvalues

are 2 and −3. The corresponding eigenvectors are (1, 2) and (2,−1). The general solution
is

x(t) = C1e
2t

[
1
2

]
+ C2e

−3t

[
2
−1

]
,

where C1 and C2 are constants. The initial conditions give C1 = 1, C2 = −1.

4. Let A be the matrix

⎡
⎣ 1 1 3 2

3 1 1 0
4 2 4 2

⎤
⎦. Find bases for each of the following: the null

space of A; the row space of A; the column space of A.

The third row of the matrix is the sum of the first and second rows. This implies that the
rank is at most 2. The rank clearly is 2 because the first two rows are not proportional.
Thus the null space, row space and column space all have dimension 2. A basis of the row
space consists of the first two rows. A basis of the column space is gotten by taking any
two columns. A basis of the null space consists of (1,−4, 1, 0) and (1,−3, 0, 1).

5. The theory of Fourier series implies that there are numbers a0, a1, a2, . . . such that

| sin x| =
a0

2
+

∞∑
m=1

am cos mx

for all real numbers x. Find a0, a1, a2 and a3. (It may be helpful to recall the formula

sin A cos B =
1
2
[sin(A + B) + sin(A − B)] from trigonometry.)

I got a0 = 4/π, a1 = 0, a2 = 4π/3, a3 = 0. In fact, an = 0 for n odd. For n even, an is
something like 4/

(
π(n2 − 1)

)
.

6. Find u(x, t) that satisfies the equation 25uxx = ut on the region 0 < x < π, t > 0 as
well as the boundary conditions u(0, t) = u(π, t) = 0 for t > 0 and u(x, 0) = sin 3x− sin 4x
for 0 ≤ x ≤ π.

This is a straightforward heat equation problem like the one from my previous exam. The
function f(x) = sin 3x−sin 4x is already written as a Fourier series. There is absolutely no
need to calculate integrals to do this problem. Just write down the answer, which seems
to be e−225t sin 3x − e−400t sin 4x.

7. Suppose that v1, . . . , vn are vectors in Rn and that A is an n×n matrix. If Av1, . . . , Avn

form a basis of Rn, show that v1, . . . , vn form a basis of Rn and that A is invertible.

If you have n vectors in n-space, they form a basis if and only if they’re linearly indepen-
dent, and they form a basis if and only if they span. You can view the hypothesis as the
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statement that Av1, . . . , Avn are linearly independent. The proof that v1, . . . , vn are lin-
early independent was explained in the solutions to MT1. (If you say “We already proved
this on the midterm, so I don’t have to give the proof here,” you will not get credit for the
proof.) Since the vi are linearly independent, they form a basis of Rn. To see the invert-
ibility of A, there are various options. For example, you might want to exploit the theorem
(1.49 or something) to the effect that A has an inverse if and only if its null space is 0.
Suppose x is in Rn and Ax = 0; we want to prove that x = 0. Write x = c1v1 + · · ·+ cnvn,
which is possible because the vi span Rn. Then 0 = Ax = c1Av1 + · · · + cnAvn. Because
the Avi are linearly independent, all the ci are 0. Hence x = 0, as required.

8. Let v1 =

⎡
⎣ 0

5
−2

⎤
⎦, v2 =

⎡
⎣ 1

2
3

⎤
⎦, v3 =

⎡
⎣ 9

8
7

⎤
⎦. Suppose that A is the 3 × 3 matrix for which

Av1 = v1, Av2 = 0, Av3 = 5v3. Find an invertible matrix S and a diagonalizable matrix
Λ such that A = SΛS−1.

The vi are eigenvectors with eigenvalues 1, 0 and 5. We can take Λ to be the diagonal
matrix with diagonal entries 1, 0 and 5. We take S to be the 3 × 3 matrix whose three
columns are v1, v2 and v3, in that order.
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