Midterm Solutions—March 03, 2005

1. (15 pts) Find a matrix X which satisfies the given conditions if possible. If not, explain why not.

(a) (3 pts)
$$2X + \begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}.$$

(b) (3 pts)
$$X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & -2 & 0 \\ 2 & 5 & 1 \end{pmatrix}$$

(c) (3 pts)
$$X = \begin{pmatrix} 3 & -2 & 0 \\ 2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

(d) (2 pts) $X \begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -1 \end{pmatrix}$, with X invertible.

- (e) (2 pts) $X \begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \end{pmatrix}$, with X invertible.
- (f) (2 pts) $X \begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{pmatrix}$, with X invertible.

2. (15 pts) Let

$$A := \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 & 1 \end{pmatrix}.$$

Use Gauss elimination in the standard way to:

- (a) (5 pts) Find a basis for the row space of A.
- (b) (5 pts) Find a basis for the column space of A from among the columns of A.
- (c) (5 pts) Find a basis for the null space of A.

- 3. (20 pts) Let P_3 denote the vector space of polynomials p of degree at most three. You may assume that this is a vector space of dimension 4.
 - (a) (5 pts) Prove that $(1, x^2, x^3 x)$ is a linearly independent sequence in P_3 .
 - (b) (5 pts) Prove that the set W of all $p \in P_3$ such that p(1) = p(-1) is a linear subspace of P_3 and that its dimension at most 3. Hint: Use the fact that $W \neq P_3$.

- (c) (5 pts) Prove that $(1, x^2, x^3 x)$ is an ordered basis for W.
- (d) (5 pts) Find the coordinates of (x-1)(x+1) with respect to this ordered basis.

4. (10 pts) Let
$$A := \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
.
(a) (5 pts) Find A^{-1} .

(b) (5 pts) Write
$$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
 as a linear combination of the columns of A.

- 5. (10 pts) Let A be a 7×13 matrix.
 - (a) (5 pts) What is the maximum possible dimension of the column space of A? If this is achieved, what are the dimensions of the row and null spaces of A? Explain.
 - (b) (5 pts) Answer the same questions for a 13×7 matrix.