Math 54.

First Midterm

1. (8 points) Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 6 & 7 \\ 1 & 1 & 2\end{array}\right]$, if it exists. Use the algorithm introduced in Chapter 2.
2. (8 points) A matrix A and an echelon form of A are given here:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & -1 \\
-2 & -4 & 3 & -3 & 0 \\
1 & 2 & -3 & 3 & 3 \\
1 & 2 & -2 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a). Write the solution set of the homogeneous system $A \vec{x}=\overrightarrow{0}$ in parametric vector form (i.e., as a linear combination of fixed vectors, in which the weights are allowed to take on arbitrary values).
(b). Give a basis of $\operatorname{Nul} A$.
(c). Give a basis of $\operatorname{Col} A$.
3. (5 points) Let A be an $m \times n$ matrix and let \vec{b} be a vector in \mathbb{R}^{m}. Let $A^{\prime}=\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$ be the augmented matrix. Explain carefully why the equation $A \vec{x}=\vec{b}$ is consistent if and only if $\operatorname{rank} A=\operatorname{rank} A^{\prime}$.
4. (8 points) Let $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}2 \\ 0 \\ 3 \\ -1\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{c}4 \\ 1 \\ 6 \\ -2\end{array}\right]$. Let $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
(a). Find a subset of $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ that is a basis for H. Explain how you know it is a basis for H.
(b). Let \mathcal{B} be the basis you found in part (a), and let $\vec{x}=\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}$. Find the \mathcal{B}-coordinate vector $[\vec{x}]_{\mathcal{B}}$ of \vec{x}.
5. (6 points) Let A be an $m \times n$ matrix, and let \vec{b} and \vec{c} be vectors in \mathbb{R}^{m}. Assume that both equations $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$ are consistent. Show that the equation $A \vec{x}=\vec{b}+7 \vec{c}$ is consistent.

4
6. (8 points) Use Cramer's Rule to solve for x_{2} in the linear system

$$
\begin{array}{r}
2 x_{1}+3 x_{3}=2 \\
3 x_{1}+5 x_{3}=3 \\
8 x_{1}+x_{2}=0
\end{array}
$$

7. (7 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(9 x_{1}+4 x_{2}+7 x_{3}, 2 x_{1}+3 x_{3}\right) .
$$

(a). Find the standard matrix for T.
(b). Find a basis for the range of T. Explain your reasoning.

