Second midterm of Math 54, Fall 2012

Oct 25th 2012

Name:

SID:

Section and GSI name:

Problem	Points Earned	Total Points
1		30
2	*** ***	15
3		20
4		10
5		25
Total		100

(30 points total) Consider the matrix

$$A = \begin{bmatrix} 1 & a & 1 \\ 0 & -1 & b \\ 0 & 0 & 1 \end{bmatrix}.$$

- 1. (10 points) State all necessary conditions, if any, on a, b for A to be invertible. Justify your answer.
- 2. (26 points) State all necessary conditions, if any, on a,b for A to be diagonalizable. Justify your answer.

(15 points) Find the closest point to \mathbf{y} in the subspace W of \mathbb{R}^3 spanned by \mathbf{u}_1 and \mathbf{u}_2 :

$$\mathbf{y} = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}, \qquad \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}.$$

(20 points) Find any orthonormal basis for the inner product on $\mathbb{P}_2(x)$ - i.e. polynomials in x of degree up to 2 - given by

 $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x) dx.$

(10 points) Let $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a useful expression for the matrix for A^k , where k is an arbitrary integer > 0. Hint: Use eigenvalues and eigenvectors.

(25 points total)

- 1. (15 points) Find the equation $y = \alpha_0 + \alpha_1 x$ of the least square line that best fits the data points (2,1), (5,2), (7,3), (8,3).
- 2. (10 points) For the same data points consider the equation $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4$ of the best fit least square degree four polynomial. True or false: this has a unique solution. Justify your answer.