Problem 1:
a)

$$
\begin{aligned}
E_{\text {initial }} & =E_{\text {final }} \\
k \cdot E_{\text {initial }} & +U_{\text {initial }}=k \cdot E_{\text {final }}+U_{\text {final }} \\
0 & +1 / 2 k x^{2}=k \cdot E_{\text {final }}+m g(2 r) \\
& \Rightarrow k \cdot E_{\text {top }} \equiv k \cdot E_{\text {final }}=1 / 2 k x^{2}-m g(2 r)
\end{aligned}
$$

b) The sign has to be positive since the spring exerts a force in the direction of motion on the mass. Therefore, $\theta=0$ \& so $\cos \theta=1>0$. Hence, the dot product of $F_{\text {spring }} \& d \vec{x}$ is going to be positive at all time.
To find the value of $W_{\text {spring }}$ we use:

$$
w_{\text {net }}=\Delta k \cdot E
$$

$\Rightarrow W_{\text {spring }}=-\Delta U$ (Nate that $\Delta k \cdot E=-\Delta U$ since $\Rightarrow \omega_{\text {spring }}=-\left(0-1 / 2 k x^{2}\right) \begin{aligned} & \text { the energy is conserved is all the } \\ & \text { P energy transforms into }\end{aligned}$ kinetic energy,

$$
\Rightarrow w_{\text {spring }}=1 / 2 k x^{2}
$$

C) $\quad \sum F_{y}=m g+N=m a_{y}$
we are given $N=2 m g$. So,

$$
3 m g=m a_{y}
$$

where a_{y} is actually the centripial acceleration, $a_{c}=\frac{v_{\text {top }}^{2}}{r}$.
So, we get:

$$
3 m g=m \frac{V_{\text {top }}^{\alpha}}{r} \Rightarrow V_{\text {top }}=\sqrt{3 g r}
$$

d) From pant a, we find: $k \cdot E_{\text {top }}=1 / 2 m v_{\text {top }}^{2}=3 / 2 m g r$.

From pant a, we have $k \cdot \varepsilon_{\text {top }}=1 / 2 k x^{2}-m g(2 r)$ Equate. these twa \& solve for x :

$$
\begin{aligned}
& 3 / 2 m g r=1 / 2 k x^{2}-m g(2 r) \\
\Rightarrow & x^{2}=\frac{7 m g r}{k} \Rightarrow \sqrt{x}=\sqrt{\frac{7 m g r}{k}}
\end{aligned}
$$

e) Static friction exists when two objects do not move relative to each other. Therefore, the work done by static friction is zero since there is no displacement. So, no need for modification in the Energy Conservation equation.
f.) Now, we have to include the rotational kinetic energy. So,

$$
\begin{aligned}
E_{\text {initial }} & =E_{\text {final }} \\
1 / 2 k x^{2} & =m g(2 r)+1 / 2 m v_{\text {top }}^{2}+1 / 2 I w^{2}
\end{aligned}
$$

Problem 2
FBO (forces only in x-direction are shown)

$$
F+f_{s}=M_{a}
$$

$$
\begin{aligned}
+F-F_{s} & =\frac{1}{2} M_{a} \\
2 F & =\frac{3}{2} M_{a}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
F_{\text {net }, x}=F+F_{s}=M a \\
\tau_{\text {net }}=F R-F_{3} R=I \alpha \\
\text { rolling w/O slipping } a=R \alpha \\
I \alpha=\frac{1}{2} M R^{2} \alpha=\frac{1}{2} M R(R \alpha)=\frac{1}{2} M R a \\
\quad\left\{\begin{array}{l}
F+F_{5}=M_{a} \\
F-F_{5}=\frac{1}{2} M_{a}
\end{array}\right. \\
a=\frac{4}{3} \frac{F}{M} \quad \text { to the right }
\end{array}\right.
$$

b) $\alpha=\frac{a}{R}=\frac{4}{3} \frac{F}{R M}$ into the page
c)

$$
\begin{aligned}
F+f_{s} & =M_{1} \\
-F-F_{s} & =\frac{1}{2} M_{a} \\
\hline 2 f_{s} & =\frac{1}{2} M_{a}
\end{aligned}
$$

$f_{s}=\frac{1}{4} M a=\frac{1}{4} M \frac{\pi}{3} E_{M}=\frac{F}{3}$ to the right
diagram

d) K.E. $=\frac{1}{2} M v_{f}^{2}+\frac{1}{2} I \omega_{f}^{2}$
rolling $w / 0$ slipping $\quad V_{f}=R \omega_{f}$

$$
I=\frac{M R^{i}}{2}
$$

$$
\Rightarrow \frac{1}{2} I \omega_{f}^{2}=\frac{1}{2}\left(\frac{M R^{2}}{2}\right) \omega_{f}^{2}=\frac{1}{4} M\left(R \omega_{f}\right)^{2}=\frac{1}{4} M v_{f}^{2}
$$

so $\quad K_{. E}=\frac{1}{2} M v_{f}^{2}+\frac{1}{2} I \omega_{f}^{2}=\frac{1}{2} M v_{f}^{2}+\frac{1}{4} \mu v_{f}^{2}=\frac{3}{4} M v_{t}^{2}$
since F is constant, a is wastant

$$
\begin{aligned}
& V_{f}^{2}=\gamma_{0}^{2}+2 a L \\
& V_{f}^{2}=2 a L=\frac{8}{3} \frac{f}{M} L
\end{aligned}
$$

so $K E=\frac{3}{4} M V_{f}^{2}=\frac{3}{4} M \frac{8}{3} \frac{F}{4} L=2 F L$
e)

new axis of rotation is through pt. A in order for the spool to climb the step, we need to rotate it about point A.
$F, M g$ are two forces that give rise to the torque in this rotation.

$$
\tau_{u t}=F R_{F}-M g R_{\mu_{g}}
$$

lever arm corresponding to force F is $R_{F}=2 R-h$
lever arm contesponding to fore $M g$ is $R_{h g}=\sqrt{h(2 R-h)}$
$\tau_{\text {net }}=F(2 R-h)-M_{g} \sqrt{h(2 R-h)} \geqslant 0$ in order to accomplish rotation about point A

$$
F_{\text {min }}=M g \frac{\sqrt{h(2 R-h)}}{2 R-h}=M_{g} \sqrt{\frac{h}{2 R-h}}
$$

Solution of Problem 3 (corrected) (30 points)

$$
v_{\text {initial }}^{(1)}=3 \mathrm{~m} / \mathrm{s}
$$

$x=0$

$$
v_{\text {initial }}^{(2)}=0 \mathrm{~m} / \mathrm{s} v_{\text {initial }}^{(3)}=1 \mathrm{~m} / \mathrm{s}
$$

(2)
(3)

$$
\begin{equation*}
m_{1}=m_{2}=m_{3}=m=1 \mathrm{~kg} \tag{1}
\end{equation*}
$$

$$
x=2 m \quad x=3 m
$$

(5p+s a) $\left[x_{C M}\right]=\frac{\sum m_{i} x_{i}}{\sum m_{i}}=\frac{m_{1}\left(x_{1}+x_{2}+x_{3}\right)}{3 m}=\frac{0+2 m^{7}+3 m}{3}-\frac{5}{3} m \approx 1.67$ meters
(5pts) b) Etotal $=\frac{m v_{1}^{2}}{2}+\frac{m v_{2}^{2}}{2}+\frac{m v_{3}^{2}}{2}=$ canst in time (elastic collisions preserve energy)

$$
\begin{aligned}
& \Rightarrow E_{\text {total }}(t=3 \mathrm{sec})=E_{\text {total }}(t=1 \mathrm{sec})=E_{\text {total }}(t=0 \mathrm{sec})=\frac{m}{2}\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)=\frac{1 \mathrm{~kg}}{2}\left(9 \frac{\mathrm{~m}^{2}}{5^{2}}+0^{2}+1 \frac{u^{2}}{\mathrm{~s}^{2}}\right)= \\
&=55
\end{aligned}
$$

(5pts C) At the moment of time when 1 and 2 just stick together $\left(t_{1}=\frac{\text { emoter }}{V_{\text {in dial }}}=\frac{2}{3} \sec \right.$

$$
\begin{aligned}
& X_{C M}\left(t_{1}\right)=\frac{2 \text { meters. }\left(2 m^{\prime}\right)+\left(3 \text { meters }+\frac{2}{3} \text { sec } \cdot \frac{1 \text { meter }}{\text { sec }}\right) \cdot D 1}{3 n 1}=\frac{23}{9} \text { meters } \\
& \forall \\
& x_{C_{M}}\left(t_{1}\right)=\frac{23}{9} \text { meters } \approx 2.56 \text { meters term is due to displacement } \\
& \text { of the third ball after time } t_{1}=\frac{2}{3} \mathrm{~s}
\end{aligned}
$$

[5pts d)
It is clear that first callissen happens
after the $t_{1}=\frac{2 \text { meters }}{3 \text { maters } / \text { see }}=\frac{2}{3}$ see passes. It is inelastive \Rightarrow momentum censer
gives:

$$
w_{1} \cdot v_{\text {initial }}^{(1)}+w_{1} \cdot 0=2 m \cdot u \Rightarrow \quad u=\frac{1}{2} v_{\text {initial }}^{(1)}=\frac{3}{2} \text { meters } / \mathrm{sec}=1.5 \frac{\text { meters }}{\mathrm{sec}}
$$

The second collision happens after time Δt after $t_{1}, s . t$.

$$
\begin{aligned}
& 2 \text { meters }+\underset{1 \prime}{U} \cdot \Delta t=\underset{11}{3 \text { meters }}+\frac{2}{3} \sec \cdot 1 \frac{\text { mater }}{\sec }+1 \frac{\text { niter }}{\sec } \cdot \Delta t \Rightarrow \\
& x_{2}^{\prime \prime} \quad 1,5 \frac{\text { meters }}{s e c} \quad x_{3} \quad d \quad d . s p \text {.term, see above } \\
& \Rightarrow \frac{2}{5} 0.5 \Delta t=\frac{5}{3} \text { metals } \Rightarrow \Delta t=\frac{10}{3} \mathrm{sec} \Rightarrow \quad t_{2}=t_{1}+\Delta t=\frac{2}{3} \mathrm{sec}+\frac{10}{3} \mathrm{sec}=4 \mathrm{sec}
\end{aligned}
$$

So, the second collision happens attar time $4 \sec$ since the initial $t=0$ moment of time. The first callisten as we already knew happens at $\frac{2}{3} \mathrm{sec}$.
(Problem 3) (continued...)
Thus at time $=1 \mathrm{sec}$ and time $=3 \mathrm{sec}$ only first collision has happened

At $t=0$ the total energy was found in (b): $E_{\text {total }(t=0)=55}$

At $t=3$ and $t=1 \mathrm{sec}$:

$$
E_{\text {total }}(t=3 \mathrm{sec})=E_{\text {total }}(t=1 \mathrm{sec})=\frac{2 \mathrm{~m} \cdot u^{2}}{7}+\frac{\mathrm{m} r_{3}^{2}}{2}=\left(1.5^{2}+\frac{1}{2} \cdot 1^{2}\right) \mathrm{s}=2.75 \mathrm{~J} \text {. }
$$

55 e). center of mass $=$ geometrical center $=$ center of the middle ring
(because of symmetry)
After

sEpts f)
Momentum is conserved:

$$
M \vec{V}_{0}=\vec{P}_{f}=(3 M) \cdot \vec{V}_{C M} \Rightarrow \overrightarrow{V_{C M}}=\frac{\vec{V}_{0}}{3}
$$

Problem 4

$$
\begin{aligned}
F & =\frac{d p}{d t}=\frac{d m * v_{r}}{d t}=\frac{d m}{d t} v_{r} \\
& =M(t) a=M(t) \frac{d v}{d t}
\end{aligned}
$$

Since the velocity of water is changing from v_{w} to $\mathrm{V}(\mathrm{t}), v_{r}=v_{w}-v(t)$.
So $\frac{d v}{d t}=\frac{1}{M(t)} \frac{d m}{d t} v_{r}=\frac{1}{M(t)} \frac{d m}{d t}\left(v_{w}-v(t)\right)$.
b) $\frac{d m}{d t}=\frac{d m}{d l} * \frac{d l}{d t}=\lambda \frac{d l}{d t}$
$\& \frac{d l}{d t}=v_{r}$ is also the relative velocity between water and the cart.
Finally $\frac{d m}{d t}=\lambda v_{r}=\lambda\left(v_{w}-v(t)\right)$.
If you find it's not so easy to understand why it should be the relative velocity, not v_{w}, just try to switch to the moving frame of the cart. Image you're moving with the cart, the velocity of the water now becomes $\mathrm{v}_{\mathrm{w}}-\mathrm{v}(\mathrm{t})$, then it become natural that $\lambda\left(v_{w}-v(t)\right)$ represents the amount of water coming into collision with the cart in the time interval dt.

