Name
Section.

Engineering 28
Fall Semester 1997
Midterm Examination \#2, Written Part
Time Limit: 50 minutes
Closed book exam.
34 points possible on this part.

Written score / 34CAD score/66

TOTAL EXAM SCORE

READ THESE INSTRUCTIONS!

Write your name at the top of every page, or you will lose 1 point per page for this part of the examination.

This part of the examination is True/False. For each statement below, circle T if the statement is always true, F if the statement is always or sometimes false. If F is circled, a brief explanation or counterexample must be provided in the space immediately below the statement, or no credit will be given.

For statements which refer to a drawing, there is no need for a great deal of precision. Lines that appear parallel were drawn to appear parallel, those which appear perpendicular were drawn to appear perpendicular, etc.

Each correct answer is worth 1 point. There is a penalty for guessing: $-1 / 2$ point will be assessed for each incorrect answer.

Circle True or False. Provide a brief explanation or counterexample for each false statement.
$T \quad F \quad$ 1. Skew lines can never appear to be parallel.
$T \quad F$ 2. Two non-intersecting lines can never determine a plane.
$T \quad F \quad$ 3. Two perpendicular lines determine a plane.
$T \quad F \quad$ 4. Any viewplane parallel to a line reveals the true length of the line.
$T \quad F \quad$ 5. Any viewplane adjacent to the point view of a line reveals the true length of the line.
$T \quad F \quad$ 6. Perpendicular lines will always appear to be perpendicular.

Name.

T F 7. The true length of a line is always equal to or shorter than its projected length.
$T \quad F \quad$ 8. The true angle between two lines is always equal to or smaller than its projected angle.

T F 9. The dihedral angle between two intersecting planes can be seen when the intersection line between the planes is shown in point view.

T F 10. If a line and a plane intersect at a point, the intersection point on the line can be seen when the plane is seen in edge view.
$T \quad F \quad$ 11. If a line and a plane intersect at a point, the true angle of intersection can be seen when the line and any edge of the plane are both seen in true length.
$T \quad F \quad$ 12. If a line and a plane intersect at a point, the true angle of intersection can be seen when the line is in true length and any line in the plane is seen in point view.

T F 13. Any view of a plane will always contain at least one line (in the plane) that is in point view.
$T \quad F \quad$ 14. Any view of a plane will always contain at least one line (in the plane) that is in true length.

T F 15. The cutting plane method cannot be used to find a virtual intersection between a line and a plane.

Statements 16-20 refer to the lines $A B$ and $C D$ shown in the figure below. Viewplane H is horizontal.

$T \quad F$
16. Lines $E A$ and $C D$ are skew lines
$T \quad F \quad$ 17. Lines $A B$ and $C D$ are skew lines.
$T \quad F \quad$ 18. Viewplane 1 shows the shortest overall connector between lines $A B$ and $C D$.
$T \quad F \quad$ 19. Plane $E A B$ is parallel to line $C D$.
T F 20. Lines $A B$ and $C D$ are shown in true length in viewplane 2.
$T \quad F \quad$ 21. The connector between the lines is shown in true length in viewplane 1.

Name

T F 22. If the connector were projected into viewplane H, it would be shown in true length.

T F 23. If the connector were projected into viewplane F, it would be shown in true length.
$T \quad F \quad$ 24. Viewplane F is vertical.
$T \quad F \quad 25$. Viewplane 1 is not vertical.
$T \quad F \quad$ 26. Viewplane 2 is not vertical.

T F 27. Viewplane 2 is not perpendicular to viewplane H.

Statement 28-34 refer to planes $A B C$ and $Q R S$ shown in the figure below.

$T \quad F \quad$ 28. Line $E B$ (or $E R$), is the intersection between planes $A B C$ and $Q R S$
$T \quad F \quad$ 29. Line $A C$ is shown with correct visibility in viewplane H.
$T \quad F \quad$ 30. Line $B C$ is shown with correct visibility in viewplane H.
$T \quad F \quad$ 31. Line $Q R$ is shown with correct visibility in viewplane F.

T F 32. Line QS shown with correct visibility in viewplane F.
$T \quad F \quad$ 33. Points B, R, S, E, and Care coplanar.
$T \quad F \quad$ 34. The line $E B$ is perpendicular to the plane formed by points A, C, S, and Q.

