E7 Midterm Examination 1

October 12, 2012

NAME	:				
CID					

SECTION: 1 or 2 (please circle your discussion section)

LAB:

#11: TuTh 8-10	#12: TuTh 10-12	#13: TuTh 12-2	#14: TuTh 2-4
#15: TuTh 4-6	#16: MW 8-10	#17: MW 10-12	#18: MW 2-4
#19: MW 4-6	#20: TuTh 10-12*	#21: MW 3-5 *	#22: TuTh 4-6*

(please circle your lab section) * in Wheeler

Part	Points	Grade
A	10	
В	8	
С	10	
D	5	
Е	12	
F	15	
TOTAL	60	

Carefully read and follow these instructions:

- 1. Write your name on the top right corner of each page.
- 2. Record your answers only in the spaces provided.
- 3. You may <u>not</u> ask questions during the exam.
- 4. You may <u>not</u> leave the exam room before the exam ends.
- 5. You may not use any electronic devices.
- 6. You may use a 1-page 8.5×11 of handwritten notes.
- 7. Count the number of pages before the start of the exam. There should be **8 pages**.

Part A (10 points)

Let two MATLAB arrays \mathbb{A} and \mathbb{B} be defined as

Record the output of the following MATLAB commands:

A.1 (1 point)

>> A

ans = '_ _ _

A.2 (1 point)

ans =

A.3 (1 point)

ans =

A.4 (1 point)

ans =

A.5 (1 point)

ans =

A.6 (1 point)

>> 1./B

ans =

ans =

A.7 (1 point)

>> B.^2

ans =

A.8 (1 point)

>> [A' B]

ans =

A.9 (1 point)

>> size([A;B])

ans =

A.10 (1 point)

>> A.*B

ans =

Part B (8 points) Suppose that the following code is executed.

```
clear
A = cell(2,2);
A{1,1} = linspace(0,5,100);
A(1,2) = {{'Hello' 'World'}};
A{2,1} = A(1,1);
A{2,2} = {@cos, @(v) 10-2*v};
```

B.1 (1 point) Write a 1-line command that returns the contents of cell (1,2) of A.

>>

B.2 (1 point) Write a 1-line command that changes the second word in the contents of cell (1,2) of A to 'Earth'.

>>

- **B.3** (1 point) What does class ($A\{2,1\}$) return?
- **B.4** (1 point) What does size $(A\{2,1\})$ return?

B.5 (4 points) In the space provided below, sketch the graph produced by executing the MATLAB statement below. Write ERROR if the code produces an error.¹

¹plot (X, Y) plots the elements of vector Y (vertical axis) versus elements of vector X (horizontal axis).

Part C (5+5 points)

>> i

Write the outputs of the following MATLAB commands:

```
>> A = [5; 6];
>> B = [3; 4];
>> C = 3;
>> B(2) = 2;
>> B = B - C
>> t = sum([A, -a] .* B);
>> t = [t; B(2,:)]
>> [i,j] = find(t>0);
```

Name: SOLUTION page 6/8

Part D (5 points)

Let the function M-file **myfun.m** be given by

```
function r = myfun(x)
% Calculate twice of reciprocal function evaluation
reciprocal = 1/x;
r = 2*reciprocal;
```

Suppose that myfun is visible to MATLAB and the workspace is clear. Write the output of the MATLAB statements below. Write ERROR if the statement produces a MATLAB error.

>> a = myfun(a)

Name: SOLUTION page 7/8

Part E (12 points)

The function func takes two input arguments: array A and scalar n. The function returns array B of the same size as A. The elements of B are specified as follows:

- If $A(i,j) \ge 0$, then B(i,j) = 2 * A(i,j).
- If A(i,j) < 0, then B(i,j) = n.

The file func.m also contains subfunction subf.

Complete the 3 incomplete lines of the code given below.

Part F (15 points)

F.1 (10 points)

The function min_dist shown below determines the minimum value of

$$D(x) = \sqrt{f^2(x) + x^2} \quad \text{for } a \le x \le b$$

f(x) is a user-defined function. min_dist utilizes the matlab-defined function fminbnd (see syntax below) 2

Complete the missing line of code (only 1 line).

F.2 (5 points)

Write a 1-line command that uses the function <code>min_dist</code> to compute the minimum value of D(x) defined above in the range $-6 \le x \le 6$, when the function f(x) is defined by the M-file <code>MyFun</code>.

>>

 $^{^2}$ [xmin, fmin] = fminbnd (fun, a, b) xmin is a minimizer of a singled-valued vectorized function with handle fun in the interval a $\le x \le b$. fmin = fun(xmin). fun is a function handle.