- #### **EXAMINATION 2** | | | EXAMI | MAIION 2 | | · | | |--|--|--|---|---|---|--| | Chemistry 3A
Professor K. Peter C. Vollhardt
April 4, 1996 | | | | Name:(PRINT First name first, then Last name. Use capital letters!) | | | | | ck the name of ynformation if appl | | rresponding | section number. | Complete the | | | 111 | J. YANG | | 351 | D. HOLMES | | | | 121 | J. LOESER | | 361 | E. CHAN | | | | 131 | D. LARSON | | 371 | T. LEE | | | | 141 | 1. CHOONG | | 381 | H. CHANG | ************************************** | | | 1 51 | M. GOODWIN | **** | 411 | J. FULLER | | | | 1 61 | E. CHAN | · · · · · · · · · · · · · · · · · · · | 421 | B. BAXTER | | | | 1 71 | J. SELL | | 431 | J. CHIN | | | | 211 | S. PAIKOFF | | 441 | M. SCHULTZ | | | | 221 | J. STAUNTON | | 511 | D. CARROLL | | | | 311 | J. YANG | | 521 | D. GRAY | | | | 321 | T. ESKER | | 531 | J. STAUNTON | | | | 331 | J. SELL | , | 541 | J. LOESER | | | | 341 | T. GOUNTCHEV | | · 551 | S. KUMARASWAMY | | | | | ig-up an I grade
are, please indicate which | n semester you previo | ously took Chem 3A | |) | | | backs of the
have receive
least twice;
structures of | pages. This test
ed a complete exar
make sure that
or phrases. It is be | should have 12
n. A good piece
you understa n | numbered pa
of advice: rea
id exactly wh | provided. Do scra
ges. Check to mal
d carefully over to
at is being asked
acy! Good Luck! | ke sure that you
he <mark>questions</mark> a | | | DO NOT WRITE IN T | THIS SPACE | | | | | | | | | l | ` ` , | | | | | N. | | II | (60) | Ma | | | | IVa | | III | (30) | Va. | ,,,,,, | | | IVb | | IV | (30) | Vb. | | | _____(40) _____(200) (15) ٧. VI. Total Subtotal Subtotal ## I. [25 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary (cis, trans, R, S, or meso). a. (S)-3,3-Dimethylcyclohexanol b. C. d. Trans-3-[(cis-2-hydroxy-cyclopropyl)methyl]cyclobutanol e. Optically active # II. [60 Points] Add the missing starting materials, reagents, or products (aqueous work-up is assumed where necessary). Don't forget stereochemistry! a. b. d. Optically active e. f. g. h. j. CH₃I (CH₃)₃\$[‡]I ### III. [30 Points] The following reactions proceed (predominantly) by S_N2 , S_N1 , E_2 , or E_1 pathways, respectively. Give the predominant product (one only) in each case and answer the questions by circling the most applicable statement. a. $$H^+$$, CH_3OH , Δ $-H_2O$ an alkene Mechanism: S_N2 S_N1 E_2 E₁ At lower temperatures one of the following ratios will increase: S_N2/S_N1 S_N1/E₁ E₂ / E₁ S_N2 / E₂ b. Mechanism: S_N2 S_N1 E₂ Εį Changing the alkoxide to CH₃O⁻K⁺ causes <u>one</u> of the following ratios to increase: E₂ / E₁ S_N2/E_2 S_N1 / E₁ E_2/S_{N2} C. Mechanism: S_N2 S_N1 E_2 E₁ Changing the ammonia to lithium amide, Li⁺⁻NH₂, causes <u>one</u> of the following ratios to increase: E_2/S_N2 E_2/E_1 S_N2/S_N1 rearrangement / S_N2 d. Mechanism: S_N2 S_N1 E_2 Εį Changing the solvent to acetone will have <u>one or more</u> of the following effects (circle <u>all</u> that apply): rate increases S_N2 / S_N1 increases solvation of the Nu: decreases e. Mechanism: S_N2 S_N1 E_2 E₁ Changing the solvent to (CH₃)₃COH causes one of the following ratios to increase: S_N2/S_N1 E_2/E_1 E₁ / S_N1 S_N2/E₂ #### IV. [30 Points] Explain the following observations by a detailed mechanism (i.e., write a scheme with structures, use arrow-pushing, etc.) a. (Hint: Note the change in stereochemistry!) b. CH₃ acetone starting material, but racemic optically active ## V. [40 Points] Provide a viable synthetic route from starting material to product. a. Only organic starting material. You may use any required inorganic reagents. b. You may use any additional organic and inorganic compounds. #### VI. [15 Points] Chloromethoxymethane, CICH₂OCH₃, and CH₃OH react slowly to give a new compound, C₃H₈O₂, which exhibits two sharp signals in the 'H NMR spectrum at δ = 5.2 and 3.2 ppm, with an integrated ratio of 1:3. a. What is the structure of this compound? b. Assign the chemical shifts by drawing the structure again below and labeling the hydrogens as shown for cyclohexane. c. The rate of disappearance of CICH₂OCH₃ is independent of the CH₃OH concentration. Write a mechanism for this reaction.