EXAMINATION 1 | Chemistry 3A
Professor K. Peter C. Vollhardt
February 20, 1996 | | | Name: (PRINT First name first, then Last name. Use capital letters!) | | | | | |--|---|---|--|---|---------------------------|---------------------------|--| | | | | | | | | | | 111 | Yang, J. | | 351 | Holmes, D. | | | | | 121 | Losser, J. | | 361 | Chan. E. | | | | | 131 | Larson, D. | | 371 | Lee,T. | | | | | 141 | Choong, I. | | 381 | Chang, H. | | | | | 151 | Goodwin, M. | | 411 | Fuller, J. | | | | | 161 | Chan, E. | | 421 | Baxter, B. | | | | | 211 | Paikoff, S. | | 431 | Chin, J. | | | | | 221 | Staunton, J. | | 441 | Schultz, M. | | | | | 311 | Yang, J. | <u></u> | 511 | Carroll, D. | | | | | 321 | Esker, T. | | 521 | Gray, D. | | | | | 331 | Sell, J. | | 531 | Staunton, J. | | | | | 341 | Gountchev, T. | | 541 | Losser, J. | | | | | | | | 551 | Kumaraswamy, S. | | | | | Maki | ing-up an I grade
are, please indicate the s | | tools Char | - 74 | | , | | | ages. This
complete ex
hat you un | e the answers you wa
s test should have 1
cam. A good piece of
derstand exactly wi
ntic in accuracy! Go | 5 numbered page
advice: read caref
nat is being asked | s. Check t | o make sure that yo
ne questions at leas | ou have re
at twice; m | eceived
ake s i | | | O NOT WRITE II | THIS SPACE | | | | | | | | | | | | | | | | | | • | | (30) | | | | | | | | l | (30) | | | | | | | | II | (20) | | | | | | | · | II
III
IV | (20)
(30)
(20) | | | | | | | | II
III
IV
V | (20)
(30)
(20)
(15) | | | | | | | * | II III IV V Vi | (20)
(30)
(20)
(15)
(40) | | | | | | | * | II
III
IV
V | (20)
(30)
(20)
(15) | | | | | # I. [30 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary (cis, trans, or R, S, meso). a. b. C. (2R, 3S)-2-Bromo-3-chlorobutane (Fischer projection) CH₃ CH₃ CH₃ (Fischer projection) 3 d. cis-1-Cyclohexyl-4-methylcyclohexane | | | 1 | |------|--|---|
 | | 1 | e. #### II. [20 Points] Write the most favorable Lewis *octet* structure for each of the molecules depicted below (don't forget formal charges). TABLE 1-1 Partial periodic table | Period | | , | | | | | Halogens | Noble gases | |--------|----------------------|---------------------|---------------------|---------------------|--------------------|--------------------|------------------------|---------------------------| | First | H1 | | | | | | | He ² | | Second | Li ^{2,1} | Be ^{2,2} | B ^{2.3} | C ^{2,4} | N ^{2.5} | O ^{2.6} | F ^{2.7} | Ne ^{2.8} | | Third | Na ^{2.8.1} | Mg ^{2,8,2} | Al ^{2.8.3} | Si ^{2,8,4} | P ^{2.8.5} | S ^{2.8,6} | Cl ^{2.8.7} | Ar ^{2.8.8} | | Fourth | K ^{2,8,8,1} | | | | | | Br ^{2.8.18.7} | Kr ^{2.8.18.8} | | Fifth | | | | | | | [^{2.8} .18.7 | Xe ^{2.8.18.18.8} | Note: The superscripts indicate the number of electrons in each energy level of the atom. a. b. C. d. #### III. [30 Points] Trihydrogen cation H₃⁺ is an ion observable in the gas phase by protonation of H₂ and represents the most simple cyclic triatomic molecule in the shape of an equilateral triangle. $$H_2 + H^+ \longrightarrow H_3^+$$ a. To derive a molecular orbital description of this protonation, first depict an energy diagram of the interaction of two hydrogen atoms giving H₂. Clearly label the energy levels as the appropriate atomic or molecular orbitals, draw an approximate picture of the bonding and antibonding molecular orbitals, and place the electrons into the correct levels. b. Draw the energy diagram for the formation of H₃+ by the reaction of H+ with H₂. Clearly depict the energy levels of the orbitals entering into overlap and label them, and show the resulting bonding and antibonding molecular orbital levels. Place the relevant electrons into the various levels. **c.** In view of the above, would you consider the protonation of helium to furnish a stable bond? Explain. #### IV. [20 Points] Heating a compound \underline{A} to 100°C led to the exclusive formation of \underline{C} . Mechanistic work showed that this reaction proceeds through an intermediate \underline{B} , according to the following scheme: Independent synthesis of \underline{B} revealed that it is converted to \underline{A} at room temperature, none of \underline{C} being formed under these conditions. Draw a potential energy diagram describing the progress of the reaction from \underline{A} to \underline{B} to \underline{C} . Clearly label the positions of \underline{A} , \underline{B} and \underline{C} , and the transition states (TS) interconnecting the three reaction components. Circle the rate-determining TS for the conversion of \underline{A} to \underline{C} . reaction coordinate ## V. [15 Points] We shall learn later in the course that alcohols may react with hydrogen halides to generate haloalkanes: $$ROH + HX = RX + H_2O$$ TABLE 3-1 Bond-dissociation energies of some A-B bonds (DH° in kcal mole⁻¹) | , | | | | В | | | | |---|------|-----|-----|----|----|-----|-----------------| | A | Н | F | CI | Br | I | ОН | NH ₂ | | Н | 104 | 135 | 103 | 87 | 71 | 119 | 107 | | CH ₃ | 105 | 110 | 85 | 71 | 57 | 93 | 80 | | CH₃CH₂ | 98 | 107 | 80 | 68 | 53 | 92 | 77 | | CH ₃ CH ₂ CH ₂ | 98 | 107 | 81 | 68 | 53 | 91 | 78 | | (CH ₃) ₂ CH | 94.5 | 106 | 81 | 68 | 53 | 92 | 93 | | (CH ₃) ₃ C | 93 | 110 | 81 | 67 | 52 | 93 | 93 | | | | | | | | | | a. Using the table above, calculate the ΔH^{o} of the following reactions. Show your work. $$CH_3CH_2CH_2OH + HF$$ $CH_3CH_2CH_2F + H_2O$ $\Delta H^0 =$ **b**. Do you expect the ΔS^o for these reactions to be large and positive, large and negative, or negligible? Explain. | Answer: | | |---------|--| | | | | | | ## VI. [40 Points] Hydrogen peroxide, HOOH, converts alkanes to alcohols under free radical conditions with HO· as a chain carrier. For example: **a.** Write a mechanism for this reaction including initiation, propagation, and (one) termination step. Initiation: Propagation: Termination: **b**. The O-O bond dissociation energy in H_2O_2 is 51 kcal mol⁻¹ and other relevant DH° values are found in the table depicted in problem V. Calculate the enthalpies (ΔH^o) of the overall transformation and of the propagation steps. Show your work. ΔH° of overall reaction: ΔHo of propagation steps: In the oxidation of 2-methylpropane what is the expected ratio of the observed product, (CH₃)₃COH, to the other possible product, (CH₃)₂CH CH₂OH? CH_2OH Ratio $(CH_3)_3COH$: CH_3-C-H = CH_3 d. The experimental heats of formation of the components of the oxidation in a. are given below. ΔH^{o}_{f} (gas): (CH₃)₃CH -32.4 H₂O₂ -32.6 (CH₃)₃COH -74.8 H₂O -57.8 kcal mol⁻¹ Calculate again the ΔH^{o} of the reaction. Show your work. ΔH° = ## VII. [30 Points] Free radical chlorination of (2S)-1,1,2- trimethylcyclopropane is sluggish, but does furnish products of $\underline{monochlorination}$ at C_a and C_b . a. Draw all of them. Circle the appropriate descriptor for each product as chiral or achiral. Note: the five boxes may be in excess of what you need. $\boldsymbol{b}.\;$ Do you expect chlorination at $C_{\boldsymbol{a}}$ to furnish optically active products? Explain. $\boldsymbol{c}.\;\;$ Do you expect chlorination at $C_{\boldsymbol{b}}$ to furnish optically active products? Explain. # VIII. [15 Points] # Given the following values for the ΔG^o of the ring flip for cyclohexane, | | ΔG° (kcai / mole) | |---|-------------------| | - H | 0 | | -CH ₃ | 1.7 | | -CH ₂ CH ₃ | 1.8 | | -CH-CH ₃
CH ₃ | 2.2 | | CH ₃
-C CH ₃
-CH ₃ | 5.0 | ## Calculate ΔG° for the following conversions. $$CH_3$$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $$CH_3$$ CH_2CH_3 CH_2CH_3 $\Delta G^\circ =$