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Solutions 

1)  (15 points)  A cabin in the sierra mountains has walls, floor and ceiling of total area 

200 m
2
 covered with insulation having an R value of 1.0 m

2
C°/W (R  L/K, K = 

thermal conductivity).  The cabin is heated by a wood-burning stove.  The 

temperature outside on a winter night is -20 C° while the temperature in the cabin is 

20 C°. 

a) Assuming the walls, floor and ceiling all lose heat equally, how much heat/second 

is lost from the cabin? 

 

 

The cabin heat is lost by conduction through the walls. 
 

dQ/dt = -KA/L T = -A/R T = -200 m
2
/ 1.0 m

2
C°/W  40 C° = -8000 W 

 

 

b) The stove provides half its heat through thermal radiation and the other half 

through conduction+convection.  If the stove has an outer surface area of 2 m
2
 

and is painted black (emissivity = 0.9) what temperature does it have to keep the 

interior cabin temperature constant? 

 

 

The stove must provide all the heat lost through the walls to maintain a steady 
interior temperature.  Radiation accounts for half the heat provided. 
 

dQ/dt radiation = AstoveTstove
4
 = 0.5  dQ/dt lost , 

Tstove
4
 = 0.5  dQ/dt lost/ Astove  = 0.5  8000W/0.9 (5.67 10

-8
 W/m

2
K

4
) 2m

2 

= 3.92  10
10

 K
4
 

  

Tstove = (3.92  10
10

)
1/4

 K = 445 K 
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c) When burned, the wood provides 1720 kcal/kg.  If 1 log of wood weighs 3 kg, 

how many logs/hour are needed to keep the stove at the required temperature? 

 

The amount of heat provided by the stove in 1 hour must equal the heat content 
of the logs it burned. 
 
Q1 hour = dQ/dt  seconds/hour = logs/hour  mass/log  Qwood/mass 

Logs/hour  = dQ/dt  seconds/hour / (mass/log  Qwood/mass) 

  = 8000 W  3600 seconds/hour / (3kg  1720 kcal/kg  4186 J/kcal ) 

  = 4/3 

2)  (15 points) A large SUV of mass MSUV is traveling at VSUV when it must stop 

suddenly due to a traffic jam.  Its brakes consist of 4 steel disks (rotors) weighing 

mdisk each. 

a) Assuming all the SUVs kinetic energy is absorbed by its brake disks, equally by 

each disk, by how much will their temperature increase?  Evaluate your result 

taking MSUV = 2000 kg, VSUV = 100 km/hour, and mdisk = 5kg. 

 

 

The change in internal energy of the brakes must equal the amount of heat 
added as there is no work.  The heat added must equal the kinetic energy lost by 
the SUV. 
 

U = mbrakesCsteel Tbrakes = Q = 0.5 MSUV V
2

SUV 

Tbrakes  = 0.5 MSUV V
2

SUV/mbrakes Csteel 

  = 0.5  2000 kg  (10
5
 m/hour  1/3600 hours/sec)

2 
/ (4 5kg  450 J/kg C°) 

  = 86 C° 

b) If the disks initially have diameter 40 cm, by what amount will their diameter 

increase due to this temperature change?  

 

 

The disk diameter is a linear measure.  The volume expansion coefficient is 3 
times the linear expansion coefficient. 
 

steel = 1/3 steel = 1/3  3.5 10-5/C° = 1.2 10-5/C° 

D  = D steel Tbrakes = 40 cm  1.2 10-5/C°  86 C° = 0.04 cm 
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c) Assuming the initial temperature of the brakes was 20 C°, by how much does the 

entropy of the entire SUV change in coming to a stop? 

 

Only the brakes of the SUV experience an entropy change.  A reversible process 
that gives the same final state is if heat is slowly added from an (infinite) 
succession of heat reservoirs without changing the reservoirs temperature. 
 
Ti = 20 C° = 293 K 

Tf = Ti + T = 293 + 86 K = 379 K 

S = Ti
Tf dQ/T = Ti

Tf mC dT/T = mC ln(Tf/Ti) 

 = 4  5kg  450 J/kg K ln(379/293) = 2316 J/K 

3)  (15 points) A real heat engine working between heat reservoirs at temperatures Th = 

600 K and Tl = 300 K produces 400 J of work per cycle for a heat input of 1000 J.
 

a) Compare the efficiency of this real engine to that of a Carnot engine operating 

between the same temperatures
 

 

The efficiency is defined as the work done divided by the heat provided at Th. 

 = W/Qh = 400 J/1000 J = 0.4 

The Carnot efficiency is given in terms of the high and low temperatures. 

C = 1 – Tl/Th = 1 – 300 K/600 K = 0.5, higher than the real efficiency 

b) Calculate the total entropy change of the universe (engine + environment) for one 

cycle of the real engine
 

 

The engine does not change entropy in a cycle.  The environment changes 
entropy due to heat transfer from the high-temperature reservoir and to the low-
temperature reservoir.  The reservoirs do not change temperature. 
 

S  = Sh + Sl = -Qh/Th + Ql/Tl 

 = -1000J/600 K + 600J/300 K = 1/3 J/K 

c) Calculate the total entropy change of the universe for a Carnot engine operating 

between the same temperatures
 

 

The same formula for the entropy change as above applies.  The amount of heat 
exhausted to the low temperature reservoir is given by energy conservation for 1 
cycle.  The Work done is given by the efficiency. 
 
W = C Qh, Ucycle = 0 = Q - W = Qh - Ql - W = Qh(1- C) - Ql 
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Ql = Qh(1- C) = Qh(1 - (1 - Tl/Th)) = Qh Tl/Th 

S  = Sh + Sl = -Qh/Th + Ql/Tl = -Qh/Th + (Qh Tl/Th) /Tl 

 = -Qh/Th + Qh/Th = 0 

d) Show that the difference in work done by these two engines per cycle is Tl S, 

where Tl is the temperature of the low-temperature reservoir (300 K) and S is 

the entropy increase per cycle of the real engine. 

 

W = WC - Wreal = Qh  C - Wreal = 1000J  0.5 – 400J = 100J 

 
S Tl = 1/3 J/K  300 K = 100J 

 
4)  (15 points) An ice maker takes in water through a pipe at room temperature Tr and 

produces ice at Ti < 0 C°.  When running steadily the ice maker consumes power P 

and can produce Mi mass of ice in 1 hour.  The heat generated from the refrigeration 

unit of the ice maker is exhausted into the room. 

a) How much heat is exhausted by the ice maker in 1 hour of steady running?  

Evaluate your result using Tr=20 C°, Ti = -10 C°, P = 200 W, and Mi = 5kg. 

 
The heat exhausted is the heat extracted from the water in making ice plus the 
work done in 1 hour, which is equal to the power times 1 hour.  The heat 
extracted to make ice is the heat needed to cool the water to 0C° plus the heat to 

change the water to ice at 0C° plus the heat to cool the ice. 

 

Qextracted  = Qwater + Qchange + Qice 

  = MiCw(Tr - 0) + MiQfusion + MiCw(0 - Ti) 

  = Mi(CwTr + Qfusion - CwTi) 

  = 5kg ( 1 kcal/kg 20 C° + 80 kcal/kg + 0.5 kcal/kg 10 C° ) = 525 kcal 

W = P (1 hour) = 200 J/sec 3600sec/hour / 4186 kcal/J = 172 kcal 

Qexhaust = Qextracted  + W = 525 kcal + 172 kcal = 697 kcal 

 

b) Using the above values, what is the Coefficient of Performance (CP) of the 

refrigeration unit?  Compare that to the ideal CP for these temperatures. 

 

The Coefficient of Performance of a refrigerator is the heat extracted divided by 
the work.  The ideal CP is given by the room (high) and ice (low) temperatures. 
  
CP = Qextracted/W = 525 kcal/172 kcal = 3.05 

CPideal = Ti/(Tr – Ti) = (273 -10) K/30 K = 8.77 
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c) Assuming the actual CP scales as the ideal (ie that CPactual/CPideal = constant), how 

much extra power is needed to generate ice at the same rate if the room 

temperature increases 5 C°? 

 

Let (‘) denote values at the increased temperature.  Then we have 

CP’ideal = Ti/(Tr+5 – Ti) = 263 K/35 K = 7.5 

CP’actual/CP’ideal = CPactual/CPideal, or re-arranging 

CP’actual = CPactual CP’ideal/CPideal = CPactual  7.5/8.77 = CPactual  0.855 

The actual efficiency is also given by the standard formula 

CP’actual = Qextracted/W’

W’ = Qextracted/CP’actual = Qextracted/CPactual  0.855 = W / 0.855 

The Power is the work/unit time and so scales with the Work 

P’ = P/0.855 = 200 W/0.855 = 234W 

P = P’ – P = 34W 

5)  (20 points) A system of n moles of ideal gas with constant-volume molar specific 

heat CV is made to undergo a cycle (see figure below) with the following stages: 

(a b) an isobaric expansion at pressure P, (b c) an isothermal expansion at 

temperature T2, (c d) an isochoric depressurization at volume V, and (d a) an 

isothermal compression at temperature T1.

a) What are the change in internal energy of the gas U, the work done by the gas 

W, and the heat added to the gas Q for each stage of this cycle?  Express the 

results using T1, T2, and T3 PV/nR. 

 

From the ideal gas law PV = nRT we get Va = nRT1/P, Vb = nRT2/P 

From a b is an isobaric transition 

U = n CV(T2 – T1)   

W = P(Vb – Va) = P(nRT2/P – nRT1/P) = nR(T2 – T1) 

U = Q – W, so 

Q = U + W = n(R + CV) (T2 – T1) = nCP(T2 – T1) 
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From b c is an isothermal transition 

U = 0 = Q – W 

Q = W = Vb
Vc P dV = nRT2ln(Vc/Vb) 

Vc = V, and taking Vb from above gives 

W = nRT2ln(VP/nRT2) = nRT2ln(nRT3/nRT2) = nRT2ln(T3/T2) 

 

From c d is an isochoric transition 

V = 0   W = 0 

U = Q = nCV(T1 – T2) 

From d a is an isothermal transition 

U = 0 

Q = W = nRT1ln(Va/Vd) 

Vd = V, and taking Va from above gives 

W = nRT1ln(nRT1/VP) = nRT1ln(nRT1/nRT3) = nRT1ln(T1/T3) 

 

b) What is the efficiency of this cycle? 

The efficiency is given in terms of the heat lost at low temperature and the heat 

gained at high temperature. 

 = 1 - Ql / Qh  

Ql = Qcd + Qda = nCV(T1 – T2) + nRT1ln(T1/T3) 

Qh = Qab + Qbc = nCP(T2 – T1) + nRT2ln(T3/T2) 

  = 1 -  ( CV(T2 – T1) + RT1ln(T3/T1) ) / ( CP(T2 – T1) + RT2ln(T3/T2) ) 

 = R( (T2 – T1) + T2ln(T3/T2) - T1ln(T3/T1) ) / ( CP(T2 – T1) + RT2ln(T3/T2) ) 

 

6) (20 points) A sealed, insulated cylindrical container of volume V contains 1 mole 

each of monoatomic and diatomic ideal gases.  The two gases are separated into 

opposite ends of the cylinder by a heat-conducting piston that is free to move (see 

figure).  Initially the monoatomic gas has temperature Tm K, the diatomic gas has 
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temperature Td K, with Td < Tm.  The system is then allowed to reach thermal 

equilibrium. 

y

 

a) What fraction of the volume V is occupied by the different gases initially? 

 

The pressure of the gases must be equal, as otherwise the piston would move.  

We also have the ideal gas law PV = nRT, or P = nRT/V 

Pd = nRTd/Vd = Pm = nRTm/Vm, or Td/Vd = Tm/Vm, or TdVm = TmVd 

We also have 

Vd + Vm = V, or Vd = V - Vm .  Putting these together gives 

TdVm = Tm(V – Vm).  Solving for Vm gives: 

Vm/V = Tm/(Td + Tm) .  Plugging this into the expression for V gives 

Vd/V = 1 -Tm/(Td + Tm) = Td/(Td + Tm) 

b) If we neglect the heat capacity of the piston, what is the final temperature of the 

gases at thermal equilibrium? 

 

At thermal equilibrium the temperatures of the two gases must be equal.  Total 

energy must also be conserved. 

Tf = same for both gases 

U = 0 = Ud + Um = n Cd(Tf – Td) + n Cm(Tf – Tm).  Solving for Tf gives: 

Tf = (CdTd + CmTm)/(Cd+ Cm) 

We also know Cm = 3/2 R, Cd = 5/2 R, so 

Tf = (5Td + 3Tm)/8 

 

c) What fraction of the volume V is occupied by the different gases at thermal 

equilibrium? 

The same formula as we found in part a still applies, just at the new temperature. 
 

Vm/V = Tm/(Td + Tm) = Tf/(Tf + Tf) = 0.5 

Vd/V = 0.5 
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d) What is the change in entropy of each gas going from the initial condition to 

thermal equilibrium?  (hint: use a reversible path between the same initial and 

final states to compute S). 

 

Both pressure and volume change in reaching equilibrium.  The entropy change 

can be calculated using an equivalent reversible process, for instance an 

isochoric followed by an isobaric transition. 

Isobaric: 

S = Ti
Tf dQ/T = Ti

Tf n CPdT/T = nCP ln(Tf/Ti) = nCP ln(Vf/Vi) 

Isochoric: 

S = Ti
Tf dQ/T = Ti

Tf n CV dT/T = nCV ln(Tf/Ti) = nCV ln(Pf/Pi), where 

Pf = nRTf/Vf = 2nRTf/V 

Pi = nRTm/Vm = nR(Td + Tm)/V 

Adding these for the different gases and using the values found above gives 

Sm = nR( 5/2 ln((Td+Tm)/2 Tm) + 3/2 ln((5Td + 3Tm)/4(Td + Tm)) ) 

Sd = nR( 7/2 ln((Td+Tm)/2 Td) + 5/2 ln((5Td + 3Tm)/4(Td + Tm)) ) 


