
Physics 137A — Quantum Mechanics — Fall 2012
Midterm II - Solutions

These are the solutions to the exam given to Lecture 1.

Problem 1 [15 points]

Consider a particle with mass m and charge q in a simple harmonic oscillator potential.
(a) [4 points] If an externally applied electric field of magnitude Eext is switched on in the region,

sketch the new potential, V (x) = VSHO(x) + Velec(x), where Velec(x) = qEextx. Be sure to indicate
important features of the potential on your sketch.

(b) [4 points] The potential can be written V (x) = A(x−x0)2 +B. What are A, x0 and B? Feel
free to use A, x0 and B in the rest of this problem.

(c) [4 points] What are the allowed energies for this particle?
(d) [3 points] Write down the ground state wavefunction in this potential.

Solution

(a) The sketch is given below. There are three curves on the sketch: in black is the full potential of
the system, in light blue is the VSHO term, and in light red is the Velec term.

x
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VSHO
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(b) To find the coefficients A, B and x0, just set the potential equal to the proposed form

1

2
mω2x2 + qEextx = A(x− x0)2 +B

1

2
mω2x2 + qEextx = Ax2 +Ax20 − 2Ax0x+B.

Combining powers of x we find:(
1

2
mω2 −A

)
x2 + (qEext + 2Ax0)x−

(
B +Ax20

)
= 0.

In order for this previous equation to be true, we need each term in parenthesis to vanish. So from
the x2 term we find

A =
1

2
mω2.
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From the x term we have

x0 = −qEext

2A
= −qEext

mω2
.

From the constant term we have

B = −Ax20 = −q
2E2

ext

2mω2
.

(c) As we saw in part (b), the potential for this system is still quadratic in x and still has the
SHO form. The only change is that the minimum of the potential is no longer at x = 0, but at
x = x0, and the value of the potential at the minimum is not 0 but B.

The unmodified SHO problem gives energy levels En = ~ω(n + 1/2). Really, these are the
energies above the minimum of the potential. So really it is En − Vmin = ~ω(n + 1/2). In the
modified potential the minimum of the potential is B. So, for the modified problem, the energies
are

En = ~ω
(
n+

1

2

)
− q2E2

ext

2mω2
.

(d) The ground state wavefunction in this potential will match that of the unmodified SHO, but
shifted by x0. So the ground state will be

ψ0(x) =
(mω
π~

)1/4
e−

mω
2~ (x−x0)

2

.

As we found in part (b), x0 = −qEext/(mω
2) so

ψ0(x) =
(mω
π~

)1/4
e−

mω
2~ (x+

qEext
mω2 )2 .

Problem 2 [15 points]

A certain particle in a simple harmonic oscillator potential has the initial wave function

Ψ(x, 0) = A
1

1 + mω
~ x2

,

where A is a normalization constant (which you do not have to compute).
(a) [6 points] If you were to measure the energy of this particle, what values could you get?

Briefly explain your answer.
(b) [6 points] Let the n-th energy eigenfunction of the simple harmonic oscillator be ψn(x). The

wavefunction, Ψ(x, 0), can be expanded in terms of these eigenfunctions. Write down this expansion
and explain how you would compute the expansion coefficients, setting up any integrals you might
need. You do not actually have to compute these coefficients.

(c) [3 points] Which of the energy eigenvalues is the most likely result of measuring the energy
on this state? Briefly explain.

Solution

(a) The given wavefunction is even in x. The probability of getting a certain energy result is given
by the inner product

P (En) = | 〈n|Ψ(x, 0)〉 |2.

This inner product is equivalent to an integral over the energy eigenfunction times the initial condi-
tions. The initial conditions are even in x, so it is only when the energy eigenfunction is also even
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in x that their product is an even function. So the only possible cases are when n is even (including
0).

If instead n was odd, then the energy eigenfunction would be odd, and the product with the
even initial conditions would be an odd function. This gives zero when integrated over the whole
real line.

The possible results of measuring the energy of these initial conditions are all the energies En =
~ω(n+ 1/2) where n is even.

(b) The expansion in terms of the energy eigenfunctions is given by

Ψ(x, 0) =

∞∑
n=0

cnψn(x),

where cn are complex expansion coefficients. To compute the numbers cn, one performs the following
inner product

cn = 〈ψn|Ψ(0)〉 =

∫ ∞
−∞

ψ∗n(x)Ψ(x, 0)dx.

Plugging in the initial conditions and the energy eigenfunctions we find that

cn =
(mω
π~

) A√
2nn!

∫ ∞
−∞

Hn(
√

mω
~ x)e−

mω
2~ x2

1 + mω
~ x2

where ξ =
√
mω/~x, and Hn(ξ) is the n-th Hermite polynomial.

(c) The most likely result is the ground state energy, E0 = ~ω/2. The reason for this is that each
higher level has some regions where the product of Ψ(x, 0) and ψn(x) is positive and some regions
where it is negative. The result is that unlike the ground state, which is an integral over an all
positive product, the higher energy levels are integrals over both positive and negative values. This
will have to give smaller integrals, and thus smaller probabilities.

Problem 3 [30 points]

Consider a two level system with the following Hamiltonian

H =

(
0 E1

E1 0

)
where E1 is a positive real constant (with units of energy). The system also has two observable
quantities A and B represented by the following matrices:

A =

(
~ −~
−~ ~

)
B =

(
~ i~
−i~ ~

)
.

(a) [10 points] At time t = 0, the system begins in the state

Ψ(0) =

(
1
0

)
.

Find the state of the system at times t > 0.
(b) [5 points] Which of the two observables A or B commutes with the Hamiltonian?
(c) [10 points] If the observable you selected in part (b) is measured at time t = T , what are the

possible results of the measurement, and with what probability would you get each result.
(d) [5 points] Suppose that the measurement of the operator you selected in part (b) at time T

gave the larger of the two possible measurement results. The system is left to evolve until t = 3T .
What are the possible results of measuring the energy at t = 3T , and with what probability will you
get each?
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Solution

(a) To find the evolved version of the initial conditions, we will need the eigenvalues and eigenvec-
tors of the Hamiltonian. To find these we need to find those values of λ that make the following
determinant zero ∣∣∣∣ −λ E1

E1 −λ

∣∣∣∣ = 0.

This gives the characteristic equation

λ2 − E2
1 = 0.

The solutions are easy to find. We will call these E+ and E−, where

E± = ±E1.

The eigenvectors are also straightforward. If we call Ψ+ the eigenvector for E+ and Ψ− the eigen-
vector for E− we must have

HΨ+ = E1Ψ+

and

HΨ− = −E1Ψ−.

It is easy to check that

Ψ+ =
1√
2

(
1
1

)
and

Ψ− =
1√
2

(
1
−1

)
are normalized and orthogonal eigenvectors with the appropriate eigenvalue.

The next step in solving this part of the problem is to expand our initial conditions in these
eigenvectors. Once we have done so, then the time dependence amounts to tacking on an exponential
phase factor on each term. We are after an expression of the form:

Ψ(0) = c+Ψ+ + c−Ψ−

where c± are complex numbers (the expansion coefficients). To find these coefficients, we can take
inner products of the eigenvectors with the initial conditions. Thus, for c+ we have

c+ = Ψ†+Ψ(0) =
(

1√
2

1√
2

)( 1
0

)
=

1√
2

and for c− we have

c− = Ψ†−Ψ(0) =
(

1√
2
− 1√

2

)(
1
0

)
=

1√
2
.

This lets us write that

Ψ(0) =
1√
2
Ψ+ +

1√
2
Ψ−.

To add the time dependence, we need to add in the exponential phase factors

Ψ(t) =
1√
2
e−iE1t/~Ψ+ +

1√
2
eiE1t/~Ψ−.
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Written out in matrix form we have

Ψ(t) =
1

2

(
e−iE1t/~ + eiE1t/~

e−iE1t/~ − eiE1t/~

)
.

We can simplify this with Euler’s formula to find:

Ψ(t) =

(
cos
(
E1t
~
)

−i sin
(
E1t
~
) ) .

(b) The answer to this question can be worked out by direct computation. Starting with A first
we have

[H,A] = HA−AH

=

(
0 E1

E1 0

)(
~ −~
−~ ~

)
−
(

~ −~
−~ ~

)(
0 E1

E1 0

)
=

(
−~E1 ~E1

~E1 −~E1

)
−
(
−~E1 ~E1

~E1 −~E1

)
= 0.

So A is the operator that commutes with the Hamiltonian.
If you try this with the other you find

[H,B] = HB−BH

=

(
0 E1

E1 0

)(
~ i~
−i~ ~

)
−
(

~ i~
−i~ ~

)(
0 E1

E1 0

)
=

(
−i~E1 ~E1

~E1 i~E1

)
−
(
i~E1 ~E1

~E1 −i~E1

)
=

(
−2i~E1 0

0 2i~E1

)
.

which is not zero.
(c) Because the operator A commutes with the Hamiltonian, they have simultaneous eigenvectors.

So the eigenvectors we got in part (a) can be reused here. Let’s just act this operator on the Ψ±
states to see what the eigenvalues are:

AΨ+ =

(
~ −~
−~ ~

)(
1/
√

2

1/
√

2

)
=

1√
2

(
~− ~
−~ + ~

)
= 0 = 0Ψ+

and

AΨ− =

(
~ −~
−~ ~

)(
1/
√

2

−1/
√

2

)
=

1√
2

(
2~
−2~

)
= 2~Ψ−.

So the eigenvalues of the operator A are 0 and 2~ with corresponding eigenvectors Ψ+ and Ψ−.
Thus, the possible results of measuring A on the state are 0 and 2~.

The probability of getting each result is the inner product of the eigenvector for the result with
the state of the system. So

P (0) =
∣∣∣Ψ†+Ψ(t)

∣∣∣2 =

∣∣∣∣( 1/
√

2 1/
√

2
)( cos

(
E1t
~
)

−i sin
(
E1t
~
) )∣∣∣∣2 =

1

2

∣∣∣e−iE1t/~
∣∣∣2 =

1

2

and

5



P (2~) =
∣∣∣Ψ†−Ψ(t)

∣∣∣2 =

∣∣∣∣( 1/
√

2 −1/
√

2
)( cos

(
E1t
~
)

−i sin
(
E1t
~
) )∣∣∣∣2 =

1

2

∣∣∣eiE1t/~
∣∣∣2 =

1

2
.

There is a 50% chance that the measurement would yield 0 and a 50% chance that the measurement
would yield 2~.

(d) If the measurement at time T gave the larger value (2~), then the state of the system collapses
to being equal to the eigenvector corresponding to this eigenvalue. So at time t = T , the state will
be

Ψ(T ) = Ψ−.

If this state is left to evolve forward in time starting at time t = T , we just have to expand this in
energy eigenfunctions, and then add the exponential time dependence. This is, however, already an
eigenvector of the Hamiltonian, so we are basically done. The way to add the time dependence so
that we match the condition at time t = T is the following

Ψ(t > T ) = eiE1(t−T )/~Ψ−.

Now, if we measure the energy at time t = 3T , we just need to find the expansion of the state
at that time in energy eigenfunctions, and square the expansion coefficients to find the probability
of a given result. But once again, we are already written as an expansion in energy eigenfunctions.
The expansion actually includes only the eigenvector for the eigenvalue of energy equal to −E1. So
P (E1) = 0 and P (−E1) = 1. So the only possible result at this time is to find −E1.
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