
Physics 137A — Quantum Mechanics — Fall 2012
Midterm I - Solutions

1 Infinite Square Well Wavefunction

Consider the infinite square well of width a (extending from x = 0 to x = a). Take the initial spatial
wave function to be a parabola centered around the middle of the well:

Ψ(x, 0) = A(ax− x2)

Ψ(x, 0)

x
x = a

where A is some constant, a is the width of the well, and where this function applies only inside the
well (outside the well, Ψ(x, 0) = 0).

(a) Normalize this wavefunction.
(b) Calculate the expectation values 〈p〉 and 〈p2〉 in this state.
(c) Given that 〈x〉 = a/2 and 〈x2〉 = 2a2/7, what are the uncertainties σx and σp? Is the

uncertainty principle satisfied?
(d) We can write this wavefunction as a sum over the energy eigenfunctions:

Ψ(x, 0) =

∞∑
i=1

cnψn(x)

where cn are some constants and ψn(x) are the energy eigenfunctions. Set up a calculation of the
coefficients, cn, and write it as an integral with everything spelled out explicitly; you do not have to
evaluate the integral. Are all of the cn non-zero? Write a short argument justifying your answer.

Solution

(a) The normalization condition for this wavefunction is the following

1 =

∫ a

0

Ψ∗(x, 0)Ψ(x, 0)dx

Plugging in our wavefunction gives us

1 = |A|2
∫ a

0

(ax− x2)2dx = |A|2
∫ a

0

(a2x2 − 2ax3 + x4)dx.

These are straightforward integrations to perform so we find

1 = |A|2
(
a2x3

3
− 2ax4

4
+
x5

5

)∣∣∣∣a
0

= |A|2a5
(

1

3
− 1

2
+

1

5

)
= |A|2 a

5

30
.

This means that we should take

A =

√
30

a5
.
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Note that we could have multiplied this by a phase factor, but we chose to have a real value for A.

(b) The expectation value of p is given by the following:

〈p〉 =

∫ a

0

Ψ∗(x, 0)p̂Ψ(x, 0)dx.

This is a case where we can jump to the answer. The wavefunction itself is even with respect to the
center of the well. One derivative of this even function produces an odd function. So the overall
integrand is the product of an even function with an odd function, which is an odd function. Any
odd function integrated over a symmetric interval is zero. So

〈p〉 = 0.

To find 〈p2〉 we have to compute

〈
p2
〉

=

∫ a

0

Ψ∗(x, 0)p̂p̂Ψ(x, 0)dx.

As part of this consider the action of p̂2 = −~2∂2/∂x2. When acted on the wavefunction, we find

p̂2Ψ(x, 0) = −~2 ∂
2

∂x2
A(ax− x2) = −~2A(−2) = 2A~2.

So our expectation value is just

〈
p2
〉

= |A|2
∫ a

0

(ax− x2) · 2~2dx

= 2~2
30

a5

(
ax2

2
− x3

3

)∣∣∣∣a
0

= 2~2
30

a5
a3
(

1

2
− 1

3

)
= 2~2

30

a2
1

6

=
10~2

a2
.

(c) The dispersion in x is given by

σx =

√
〈x2〉 − 〈x〉2 =

√
2a2

7
− a2

4
= a

√
2/7− 1/4 = a

√
1/28.

A similar calculation for p gives

σp =

√
〈p2〉 − 〈p〉2 =

√
10~2/a2 =

~
a

√
10.

Their product is

σxσp =
a√
28

~
a

√
10 =

~
2

√
10

7

So the uncertainty principle is satisfied because
√

10/7 ≥ 1.

(d) To find the coefficients cn one need only take the integral of the nth energy eigenfunction
against the initial conditions:
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cn = 〈ψn |Ψ〉 =

∫ a

0

ψ∗n(x)Ψ(x, 0)dx.

We can be more specific by plugging in the two functions

cn =

∫ a

0

√
2

a
sin
(nπx

a

)√30

a5
(ax− x2)dx.

We can collect the constants out front and find

cn =

√
60

a3

∫ a

0

(ax− x2) sin
(nπx

a

)
dx.

There are a fair number of these that will be zero. The wavefunction is symmetric with respect
to the center of the well. So as long as the sine term is also symmetric, it is possible to have a
non-zero cn. It is only for odd n that the sine term is also symmetric with respect to the center of
the well. The even n’s are antisymmetric with respect to the center of the well. So the cn’s for even
n are all zero.

2 Energy Measurements

A wave function for a particle is written as the following superposition of stationary states:

Ψ(x, 0) =
1

2
β1(x) +

(1− i)
2

β2(x) + c3β3(x)

where c3 is some complex constant, β1(x), β2(x) and β3(x) are mutually orthogonal, normalized,
energy eigenstates with energies E1 = 1 eV, E2 = 2 eV and E3 = 3 eV.

(a) Determine c3. Is there any ambiguity in your result? Explain briefly.
(b) Determine the expectation value of the total energy as a function of time. Explain briefly.
(c) What is the probability that a single measurement of the energy will result in the expectation

value of the energy for this particular wavefunction? Explain briefly.
(d) How would you experimentally determine the expectation value of the energy for this state?

Solution

(a) There are two ways to think about this part of the problem. We can utilize the fact that we
know that the sum of the absolute magnitude squared of the coefficients in the expansion has to be
1, or we could apply the normalization condition to the wavefunction directly.

The first method would require that

1 =

∣∣∣∣12
∣∣∣∣2 +

∣∣∣∣1− i2

∣∣∣∣2 + |c3|2 .

Computing these magnitudes we have

1 =
1

4
+

1− i
2

1 + i

2
+ |c3|2 .

Some rearrangement gives

|c3|2 = 1− 1

4
− 2

4
=

1

4

so we mist have

c3 =
1

2
.

There is some freedom in this result as we could easily well have taken
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c′3 =
1

2
eiθ

for some angle θ. The absolute magnitude squared of this c′3 is the same as that for c3. So the
normalization condition will be satisfied equally well in either case.

In the second form, we take the integral of this functions complex conjugate with itself:

∫
Ψ∗(x, 0)Ψ(x, 0)dx =

∫ (
1

2
β1(x) +

(1− i)
2

β2(x) + c3β3(x)

)∗(
1

2
β1(x) +

(1− i)
2

β2(x) + c3β3(x)

)
dx

There are a great many simplifications we can make here. The left hand side is 1, because we want to
enforce normalization. The nine terms on the right will end up expressing either the normalization
of the β functions or the orthogonality of these functions:

1 =
1

4

∫
β∗1(x)β1(x)dx +

(1 + i)(1− i)
4

∫
β∗2(x)β2(x)dx+ |c3|2

∫
β∗3(x)β3(x)dx

+
1− i

4

∫
β∗1(x)β2(x)dx+

1 + i

4

∫
β∗2(x)β1(x)dx

+
c3
2

∫
β∗1(x)β3(x)dx+

c∗3
2

∫
β∗3(x)β1(x)dx

+ c3
1 + i

2

∫
β∗2(x)β3(x)dx+ c∗3

1− i
2

∫
β∗3(x)β2(x)dx.

The terms in the first row all can be done when we realize that the eigenfunctions are normalized.
The six terms in the subsequent rows all are zero because these functions are mutually orthogonal.
So we are left with

1 =
1

4
+

2

4
+ |c3|2.

The solution of this is for

c3 =
1

2

where we have the same ambiguity as in the other method.
As I said, either of these methods would be a valid solution to this part of the problem.

(b) Again, there are two ways to approach this problem (at least). The first is to find the time-
dependent wavefunction given these initial conditions and then take the expectation value directly.
The second is to recognize that when have a wavefunction expanded in energy eigenfunctions, that
the expectation value of the energy is related to the energy eigenvalues and the coefficients in the
expansion. Again, either way would have sufficed for this problem, but in doing the first method,
we will derive the result in the second.

We know that the β functions satisfy the time-independent Schrödinger equation,

Ĥβi(x) = Eiβi(x)

where Ĥ is the Hamiltonian for this system, βi are the energy eigenfunctions, and the Ei are the
associated energy eigenvalues. To make a time-dependent solution of the Schrödinger Equation we
have only to tack on the time dependent phase factor:

Bi(x, t) = βi(x)e−iEit/~.
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The same is true when the initial conditions are a sum of energy eigenfunctions because the
Schrödinger Equation is linear. So the initial conditions for this problem can become time dependent
by adding the exponential factors appropriately:

Ψ(x, t) =
1

2
β1(x)e−iE1t/~ +

1− i
2

β2(x)e−iE2t/~ +
1

2
β3(x)e−iE3t/~.

Next we apply the definition of the expectation value of the energy:

〈H〉 =

∫
Ψ∗(x, t)ĤΨ(x, t)dx.

However, we can simplify our life by realizing that our wavefunction is written as a sum of the energy
eigenfunctions. So we have

ĤΨ(x, t) = Ĥ
∑
i

ciβi(x)e−iEit/~ =
∑
i

ciEiβi(x)e−iEit/~.

Now, when we multiply this by Ψ∗, and integrate, we will find again nine terms: three of which
are products of an energy eigenfunction with itself, and six of which are cross terms. In each of
the terms, the time dependence drops out, because each copy of exp (−iEit/~) is multiplied by
exp (iEit/~), which is 1. The cross terms cancel because of the orthogonality so we are left with

〈H〉 =
∑
i

|ci|2Ei
∫
β∗i (x)βi(x)dx.

In the previous we have pulled the constants out of the integral. What is left is the normalization
condition for the energy eigenfunctions.

〈H〉 =
∑
i

|ci|2Ei

This is an equally valid starting location. Notice that there is no time dependence to the expectation
value of the energy. This is because we are working with stationary states.

All that is left is to plug in our particular values and find the expectation value:

〈H〉 =

∣∣∣∣12
∣∣∣∣ 1 eV +

∣∣∣∣1− i2

∣∣∣∣ 2 eV +

∣∣∣∣12
∣∣∣∣ 3 eV =

1 eV

4
+

2 eV

2
+

3 eV

4
= 2 eV.

Again, the reason this expectation value is not time dependent is because the energy eigenfunc-
tions are able to easily furnish a solution of the full Schrödinger Equation. These solutions, which
are orthogonal and normalized, cannot give time dependent energy expectation values because the
time dependence always meets its conjugate and becomes a factor of 1. This is why these are called
stationary states: once they are in such a state, they stay there (up to a phase factor).

(c) Normally you would not expect the expectation value of the energy to be equal to one of the
possible values you might get upon measuring the energy. The possible results of a measurement of
energy are the energy eigenvalues. In this case, we do have an energy eigenvalue equal to 2 eV.

From postulate three, we know that the probability of getting this result is given by the square
of the expansion coefficient: P (Ei) = |ci|2 = | 〈βi|Ψ〉 |2. In this case, we are looking for the case
when i = 2, so we take either

P (2 eV) =

∣∣∣∣1− i2

∣∣∣∣2 =
1

2

or we take the norm squared of

〈β2 |Ψ〉 =

∫
β∗2(x)Ψ(x, 0)dx =

3∑
i=1

ci

∫
β∗2(x)βi(x)dx =

3∑
i=1

ciδ2,i = c2 =
1− i

2
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which is the same as the previous probability.
Again, this is not generally possible for a given system and given initial conditions. The expec-

tation value of the energy could be a value of energy that would never be the result of a measurement.

(d) To measure the expectation value of the energy, we would prepare many copies of the system
in the prescribed initial conditions. Then, the energy of each copy of the system is measured, once
for each copy of the system. We can then take the average of the measured values on this collection
of systems, and that would be the expectation value of the energy.
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