UNIVERSITY OF CALIFORNIA AT BERKELEY

Department of Mechanical Engineering ME132 Dynamic Systems and Feedback

Midterm I

Fall 2012

Closed Book and Closed Notes. One 8.5×11 sheet (double-sided) of handwritten notes allowed. Scientific calculator with no graphics allowed.

Your Name: TAREK	RABBAI	WI
------------------	--------	----

Please answer all questions. This exam has 11 pages.

Problem:	1	2	3	4	5	Total
Max. Grade:	20	15	40	10	15	100
Grade:						
		g 1 7 m				

1. Consider the following input-output differential equation:

$$\ddot{y}(t) + \dot{y}(t)u(t) + 2y(t) = 0$$

where u(t) is the input and y(t) is the output. The initial conditions are $\dot{y}(0) = 2$ and y(0) = 1.

(a) Is this system,

i. Linear? No the term y (4) u(t) make the system non-linear.

ii. Time-invariant? Yes, let y(+) be the output for an input u(+)

y(+-t) the output of an input u(+-T)? Is $\dot{y}(t-t) + \dot{y}(t-t) + u(t-t) + 2y(t-t)? = 0$ iii. Memoryless?

True! since t' is a dummy variable

No, the terms \dot{y} , and \dot{y} u and $\dot{d}(t-t)=dt'$

iii. Memoryless? Tr No the terms ij, and ij u make the system dynamic

(b) Write down the differential equation in state-space form.

$$\dot{\chi}_1 = \chi_2$$
 $\dot{\chi}_2 = \ddot{y} = -\dot{y}(+)u(+) - 2y(+)$

$$= \frac{\dot{\chi}_1 = \chi_2}{\dot{\chi}_2 = -2\chi_1 - \chi_2 u}$$

$$\frac{\chi_1(0) = 1}{\chi_2(0) = 2}$$

(c) Sketch the Simulink block diagram for the system by composing integrators. Show also where the initial conditions $\dot{y}(0)$ and y(0) are set.

Hint: To multiply two signal u_1 and u_2 in simulink, you can use the product block diagram as shown below:

2. Consider the system described by the differential equation

$$\dot{y} + 2y = 2u + d$$

where u(t) is the input, d(t) is the disturbance, and y(t) is the output. The initial condition is y(0) = 2.

Let
$$u(t) = \begin{cases} 0 & t < 1 \\ 4 & t \ge 1 \end{cases}$$
, and $d(t) = \begin{cases} 0 & t < 1.5 \\ -6 & t \ge 1.5 \end{cases}$.

Sketch the response y(t) on the graph provided next.

$$y(t) = y(0)e^{-2t}$$

= $2e^{-2t}$

$$y(1) = 0.27$$

$$1 \le t < 1.5$$

 $u = 4$, $d = 0$
 $y \le s = \frac{2}{2} Uss$

$$y(t) = yss + e$$
 $= (t-t_0)[y(t_0) - y_{5s}]$
= $4 + e^{-2(t-1)}[y(t_0) - 4]$

$$y(1.5) = 4 + e^{-2(0.5)} [0.27-4]$$

= 2.63

$$455 = \frac{2}{2} \text{ Uss} + \frac{1}{2} \text{ dss}$$

$$= 4 + \frac{1}{2} (-6)$$

Time constant = 2s

3. A system is described by the following differential equation:

$$\dot{y}(t) - 2y(t) = u(t)$$

where u(t) is the input and y(t) is the output. The initial condition is y(0) = 0

- (a) Is the system described by the SLODE stable?
 -2<0 and the system is not stable
- (b) We wish to control the SLODE using a controller of the form

$$u(t) = K_{fb}(r - y) + K_{ff}r + u_d(t),$$

with K_{fb} the feedback gain, K_{ff} the feedforward gain, and $u_d(t)$ an input disturbance signal (an external signal we do not have control over). Write the closed-loop differential equation.

$$\dot{y} - 2y = K_{fb}(r-y) + K_{ff}r + 4$$

 $\dot{y} + (K_{fb} - 2)y = (K_{fb} + K_{ff})r + 4$

(c) Sketch the Simulink block diagram for the closed-loop system in the previous question 3(b).

(d) Which values of the controller K_{fb} and K_{ff} guarantee closed-loop stability?

Kff R grades were not deducted it no statement is made on Kff.

- (e) Assume $K_{ff} = 0$. Can you design a controller K_{fb} such that
 - (1) the closed-loop system is stable,
 - (2) the steady-state output tracking error less than 10% when the reference signal is constant and when $u_d(t) = 0$, i.e. $|y_{ss} r| < 0.1 |r|$ with y_{ss} the steady-state output when $u_d(t) = 0$,
 - (3) The steady-state attenuation of a constant input disturbance is greater or equal than 90%, i.e.

$$\left| \frac{y_{ss}}{u_d} \right| < 0.1$$

with y_{ss} the steady-state output when r = 0 and u_d is constant.

(4) K_{fb} can not have a magnitude more than 20, i.e. $|K_{fb}| < 20$.

Report the value of the controller K_{fb} if you were able to find one. Otherwise claim that the control design problem has no solution.

(1)
$$K_{fb} > 2$$

(2) $Y_{55} = \frac{K_{fb}}{K_{fb}-2} \Gamma$
 $\Rightarrow |Y_{55} - \Gamma| = |(\frac{K_{fb}}{K_{fb}-2} - 1) \Gamma| = \frac{2}{K_{fb}-2} \Gamma| = \frac{2}{K_{fb}-2} |\Gamma|$
Thus $|Y_{55} - \Gamma| < 0.1 |\Gamma|$ is equivalent to
$$\frac{2}{K_{fb}-2} < 0.1 \Rightarrow 0.1 |K_{fb} - 0.2| > 2$$

$$\Rightarrow |K_{fb} > 22$$
(3) In this case $Y_{55} = \frac{U_{d}}{K_{fb}-2}$

$$|\frac{Y_{55}}{U_{dd}}| = |\frac{1}{K_{fb}-2}| = \frac{1}{K_{fb}-2} \Rightarrow \frac{1}{K_{fb}-2} < 0.1 \Rightarrow |K_{fb} > 12$$
(4) $|K_{fb}| < 20$

There is no Ksb that can satisty the requirements (1),(21,(3),(4).

(f) Remove the assumption that $K_{ff} = 0$ and solve the control design in the previous question 3(e). In other words, design a feed-forward controller K_{ff} and feedback controller K_{fb} which meet the specifications (1)-(4) of the previous question 3(e). Report the values of K_{ff} and K_{fb} .

$$|y_{ss}-r| = \left| \frac{K_{fh}+2}{K_{fb}-2} r \right| = \frac{1}{K_{fb}-2} \cdot \left| K_{ff}+2 \right| |r|$$

$$\frac{1}{K+5b^{-2}} \cdot |K+7| \cdot |M| < 0.1 |K|$$

$$= > |K_{f} + 2| < 0.1(|K_{5b} - 2|)$$

Any choice that satisfies the conditions (1), (21, (3)

4. Consider the same system of the previous exercise

$$\dot{y}(t) - 2y(t) = u(t)$$

and a controller described by the differential equation

$$\dot{u}(t) = K_1(r - y) + K_2 \dot{y}$$

What are the conditions on K_1 and K_2 which result into a stable closed-loop system? (Hint: the closed-loop system linking r and y will be a second order differential equation)

$$\dot{y}(t) - 2y(t) = u(t)
 \dot{y}(t) - 2\dot{y}(t) = \dot{u}(t)
 = K_1(r-y) + K_r \dot{y}
 = \dot{y}(t) - (K_2+2) \dot{y}(t) + K_1 y(t) = K_1 r(t)$$

characteristic polynomial,

$$S^{2} - (K_{2}+2)S + K_{1}$$

is stable if $-(K_{2}+2)70 \Rightarrow K_{2}<-2$
 $K_{1}70$

due to RHZ.

Atternatively, the voots are,

$$\lambda_{12} = \frac{k_2+2 \pm \sqrt{(k+2)^2-4k_1}}{2}$$

we need Real (71,12) < 0 to be stable, If (K+2)-4K1<0, then his are complex

5. Consider the first order LTI system described by the differential equation

$$\dot{y}(t) + ay(t) = bu(t)$$

where
$$u(t) = \begin{cases} 0 & t < 0 \\ 2\sin(\omega t) + \sin(100\omega t) & t \ge 0 \end{cases}$$
 is the input, and $y(t)$ is the output.

The bode plot for this system is shown below.

(a) Assume that the output has reached steady state after 4 seconds, based on the bode plot, draw the steady-state output $y_{ss}(t)$ for $\omega = 3$. Make sure you label the response properly, i.e. amplitude, phase-shift, period.

- D Read Bode plot for magnitude of gain and phase shift. $\omega = 3$ and $\omega = 300$
- 2 Convert Bode units.

$$M(3)$$
: $10 dB \Rightarrow 20 log_{10} M(3) = 10$

$$M(3) = 10^{\frac{1}{2}}$$

$$= 3.16$$

$$M(300)$$
: $-30 \, dB = 7$ $20 \, log_{10} \, M(300) = -30$

$$M(300) = 10^{-3/2}$$

$$= (0.03)$$

- 3) We can ignore the effect of the sin (100 wt) term in the input since this attenuated by 0.03. => negligible.
- (a) compute the phase shift, time delay, period, amplitude $\phi(3) = -720 = -1.26 \text{ rad}$

$$t_{delay} = \frac{-\phi(3)}{\omega} = \frac{1.26}{3} = 0.42s$$

period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{3} = 2.15$$

$$y(t) = 6.32 \sin (3t - 1.25)$$

(5) since period 22s, start @ 4s