$$
\text { Problem } 1
$$

(a) This part was not stated precisely So two solutions were accepted. In either case, we ignore thermal contraction of the glass and cork.
(i) $\frac{\Delta V}{V}$ for the air in the reck space:
$\Delta V_{\text {neck }}=-\Delta V_{\text {wive }}=2 \beta V_{\text {owike }} \Delta T$ where β is the
expansion coefficient for water. Then

$$
\frac{\Delta V}{V}=\frac{-2 \beta V_{\text {owim }} \Delta T}{\pi\left(\frac{d}{2}\right)^{2} H}=.33
$$

(ii) $\frac{\Delta V}{V}$ for wine only: This is $\frac{\Delta v}{r}=2 \beta(\Delta T)=-.0021$.
(b) Observing that $V_{N S}=\pi\left(\frac{d}{2}\right)^{2} H$ and assuming that d is constant,

$$
\begin{aligned}
\frac{V_{\text {Ns final }}}{V_{\text {Ns init }}} & =\frac{H_{f}}{H_{i}} \text {. so } H_{f}=H_{i}\left(\frac{V_{\text {Ns init }}+V_{\text {Ns final }}}{V_{\text {NS init }}}\right) \\
H_{f} & =H_{i}\left(1+\left(\frac{\Delta V}{V}\right)_{\text {necrespace }}\right) \\
& =2 \mathrm{~cm} .
\end{aligned}
$$

(C) Let $\left(V_{0}, V_{f}\right)\left(T_{0}, T_{f}\right)$ be the initial and final volumes and temperatures of the neckspace aim. $B y$ the ideal gas law,

$$
\frac{P_{a+m} V_{0}}{T_{0}}=\frac{P_{f} V_{f}}{T_{f}} \text { so } P_{f}=P_{a+m} \frac{T_{f} V_{0}}{T_{0} V_{f}} .
$$

To find the force the glass must exert on the corks, don't forget about the atmosphere is pressure outside.

$$
F=A\left(P_{a+m}-P_{f}\right)=\pi\left(\frac{d}{2}\right)^{2} P_{a+m}\left(1-\frac{T_{f} V_{0}}{T_{0} V_{f}}\right) \simeq 8.4 N .
$$

(d) The max temperature is when no neckspace remains.

$$
\begin{aligned}
\Delta V_{\text {wine }} & =2 \beta V_{\text {owime }} \Delta T=\pi\left(\frac{d}{2}\right)^{2} H_{0} \\
\Delta T & =\frac{\pi\left(\frac{d}{2}\right)^{2} H_{0}}{2 \beta V_{\text {owing }}} \cong 15^{\circ} \mathrm{C}
\end{aligned}
$$

So

$$
T_{M}=T_{i}+\Delta T=35^{\circ} \mathrm{C}
$$

Problem 1 Rubric
This rubric is only approximate. Tests don't always fit in to these descriptions.
(a) This part was a disaster. $N o$ ore really knew (Myself included) what " $\Delta v / v$ " meant.

- 5 points for finding $\frac{\Delta V}{V}$ fer either the neckspace or the wine (see solution)
- 3 Points for writing useful facts but not c nosing a relevant definition of $\Delta V / v$.
- 2 Points for scattered calculations of various $\Delta V^{\prime} S$.
- 1 Point for unstring relevant
(b) - 5 Points for a neariv Perfect answer
- 3 for something similar to $\frac{V_{p}}{V_{i}}=\frac{H_{f}}{H_{i}}$.
(c) - 5 for a good answer (some people made differing acceptable a poroximations)
- 4 for everything right except forgetting to sutract atmospleniz pressure
- 3 for IGL correcter used
- 2 fer incorrect use of the ideal gas law
- 1 for someting relevant
(d) - 5 or 4 for nearly correct work
- 2 or 3 if it is clear that δ tudents understand the reason there is a maximum temperatiue
- 1 for something like " $\Delta V=\beta V \Delta \Delta T$ ".

Problem \#2
a) Sublimation of dry gas (solid) \rightarrow gas)

$$
\begin{aligned}
Q_{\text {Sick }}=\text { Lice } \text { mice } & =\text { Lice }(\text { Vice } \cdot \text { dice }) \\
& =570 \mathrm{~kJ} / \mathrm{kg} \times\left(10^{-6} \mathrm{~m}^{3} \times 1500 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& =0.855 \mathrm{~kJ}=855 \mathrm{~J}
\end{aligned}
$$

b). $R=8.31 J / k \cdot \operatorname{mol}=0.0821$ atm $L / \mathrm{k} \cdot \mathrm{mol}$

We should calculate the number of molecules

$$
\begin{aligned}
n_{\text {ice }} & =\frac{V_{\text {ice }} \cdot d_{\text {ice }}}{M}=\frac{10^{-6} \times 1500 \times 10^{3}}{44}=0.034 \mathrm{~mol} \quad 2^{1} \\
n_{\text {gas }} & =\frac{P_{0} V}{R \cdot T_{0}}=\frac{1.013 \times 10^{5 \mathrm{~Pa} / \mathrm{m} \times 10 \times 10^{-3} \mathrm{~m}^{3}}}{0.0821 \mathrm{~atm} / \mathrm{k} \cdot \mathrm{mal} \times 298 \mathrm{~K}}=0.409 \mathrm{mal} \quad 2^{1} \\
\because \sum Q & =0
\end{aligned}
$$

Heat flowed out of dry ice $=$ Heat flowed into the gas $\left(\mathrm{CO}_{2}\right)$

$$
\begin{aligned}
\therefore & Q_{\text {ice }}+Q_{\text {sic }}+Q_{\text {gas }}^{\prime}=Q_{\text {gas }} \\
\because & Q_{\text {ice }}=\text { mice }^{\prime} C_{\text {vice }} \Delta T_{1} \\
& Q_{\text {sub }}=L_{\text {ice }} \cdot m_{i c e} \\
& Q_{\text {gas }}=n_{\text {ice }} C_{V \mathrm{coz}_{2}} \Delta T_{2}=\frac{5}{2} n_{\text {ice }} R \Delta T_{2} \\
& Q_{\text {gas }}=\frac{5}{2} n_{\text {gas }} R \Delta T_{3} \\
\therefore & \left(1.5 \times 10^{-3}\right) \times(800) \times(194.5-183)+855+\frac{5}{2} \times(0.034) \times 8.31 \times\left(T_{\text {eq }}-194.5\right) \\
= & \frac{5}{2} \times(0.409) \times 8.31 \times\left(298-T_{\text {eq }}\right) \\
\therefore & 13.8+855+0.70635\left(T_{\text {eq }}-194.5\right)=8.496975\left(298-T_{\text {eq }}\right) \\
\therefore & \quad T_{\text {eq }}=195.7 \mathrm{~K}
\end{aligned}
$$

c) Fraction $=\frac{n_{\text {ie }}}{n_{\text {ice }}+n_{\text {gas }}}=\frac{0.034}{0.034+0.40 \%}=0.0767=7.67 \% \quad 21$
d) $P_{f} V_{f}=n_{f} R T_{f}$

$$
P_{f}=\frac{n_{f} R T_{f}}{V_{f}}=\frac{(0.409+0.034) \times 0.0821 \times 195.7}{10}=0.712 \mathrm{~atm} 4^{1}
$$

Problem 3 solution rubric

a) $A \cdot P_{\text {atm }}+m g=A P_{i} \Rightarrow P_{i}=102,280 P_{a} \approx 102.3 \mathrm{KPa}$

$$
\omega=\frac{\int p d V=p \Delta V}{(2)}=\frac{102,280 \times 1 J \cong 102.3 \mathrm{~g}}{0.5}
$$

b) $Q=\Delta E+W=243^{k J}+102 \cdot 3^{k J}=345 \cdot 3^{K J}$ (4)
c) $1^{\text {st }}$ Law: $P_{i} V_{i}=\frac{n R T_{i}}{2} \Rightarrow T_{i}=\frac{P_{i} V_{1}}{n R}=\frac{1230.8^{1 R}}{0.5}$

$$
\frac{p_{f} V_{f}=n R T_{f} \Rightarrow F_{f}=\frac{P_{f} V_{f}}{n R_{2}}=\frac{1353 \cdot 8}{0.5}}{10}
$$

for one particle we have:

$$
\begin{aligned}
& \left.\frac{3}{2}\right|_{\beta} T=\left\langle\frac{1}{2} m v^{2}\right\rangle \\
& \Rightarrow\left\langle v^{2}\right\rangle^{1 / 2}=v_{r m s}=\sqrt{\frac{3 k_{3} T}{m}}
\end{aligned}
$$

applying this to the initial f final

$$
V_{\text {vas, } f}=\sqrt{\frac{3 \mathrm{~km} T_{f}}{m}}=1058.7 \mathrm{~m} / \mathrm{s}
$$

(2)

MIDTERM 1 - PROBLEM 4 SOLUTION

1. Part A

What condition must be satisfied at the junction between materials 1 and 2 ?
The rate of heat flow must be uniform throughout each component. As heat flow into the junction must equal heat flow out of the junction, the heat flow must be uniform throughout the composite material:

$$
\begin{equation*}
\left(\frac{d Q}{d t}\right)_{1}=\left(\frac{d Q}{d t}\right)_{2} \tag{1}
\end{equation*}
$$

2. Part B

Determine T_{J} in terms of known quantities.
We now recall the equation for heat flow through a uniform material of heat conductivity k, area A, length L, and temperature difference ΔT :

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{-k A \Delta T}{L} \tag{2}
\end{equation*}
$$

Combining equations (1) and (2), we have:

$$
\begin{align*}
\frac{-k_{1} A\left(T_{j}-T_{L}\right)}{x_{1}} & =\frac{-k_{2} A\left(T_{R}-T_{j}\right)}{x_{2}-x_{1}} \\
k_{1}\left(T_{j}-T_{L}\right)\left(x_{2}-x_{1}\right) & =k_{2}\left(T_{R}-T_{j}\right) x_{1} \tag{3}\\
k_{1}\left(x_{2}-x_{1}\right) T_{j}-k_{1}\left(x_{2}-x_{1}\right) T_{L} & =k_{2} x_{1} T_{R}-k_{2} x_{1} T_{j} \\
{\left[k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}\right] T_{j} } & =k_{2} x_{1} T_{R}+k_{1}\left(x_{2}-x_{1}\right) T_{L}
\end{align*}
$$

We arrive at our final expression for the temperature at the junction:

$$
\begin{equation*}
T_{j}=\frac{k_{2} x_{1} T_{R}+k_{1}\left(x_{2}-x_{1}\right) T_{L}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}} \tag{4}
\end{equation*}
$$

3. Part C

What is the rate of heat flow per surface area through region 1? Give its unit.
Applying equations (2) and (4), we have:

$$
\begin{align*}
\left(\frac{d Q}{d t}\right)_{1} & =\frac{-k_{1} A\left(T_{j}-T_{L}\right)}{x_{1}} \\
& =\frac{k_{1} A}{x_{1}}\left(T_{L}-T_{j}\right) \tag{5}\\
& =\frac{k_{1} A}{x_{1}}\left(T_{L}-\frac{k_{2} x_{1} T_{R}+k_{1}\left(x_{2}-x_{1}\right) T_{L}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}}\right)
\end{align*}
$$

The rate of heat flow per surface area through region 1 is

$$
\begin{equation*}
\frac{\left(\frac{d Q}{d t}\right)_{1}}{A}=\frac{k_{1}}{x_{1}}\left(T_{L}-\frac{k_{2} x_{1} T_{R}+k_{1}\left(x_{2}-x_{1}\right) T_{L}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}}\right) \tag{6}
\end{equation*}
$$

In the SI system, this quantity has units of $\frac{\mathrm{J}}{\mathrm{m}^{2} s}$ or $\frac{\mathrm{kg}}{\mathrm{s}^{3}}$.
It turns out that we can simplify this expression into a nicer form (this is not necessary to get full points on the problem):

$$
\begin{align*}
\frac{\left(\frac{d Q}{d t}\right)_{1}}{A} & =\frac{k_{1}}{x_{1}}\left(\frac{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}} T_{L}-\frac{k_{2} x_{1} T_{R}+k_{1}\left(x_{2}-x_{1}\right) T_{L}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}}\right) \\
& =\frac{k_{1}}{x_{1}}\left(\frac{k_{1}\left(x_{2}-x_{1}\right) T_{L}+k_{2} x_{1} T_{L}-k_{2} x_{1} T_{R}-k_{1}\left(x_{2}-x_{1}\right) T_{L}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}}\right) \\
& =\frac{k_{1}}{x_{1}}\left(\frac{k_{2} x_{1} T_{L}-k_{2} x_{1} T_{R}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}}\right) \tag{7}\\
& =\left(\frac{k_{1} k_{2}}{k_{1}\left(x_{2}-x_{1}\right)+k_{2} x_{1}}\right)\left(T_{L}-T_{R}\right) \\
& =-\left(\frac{\frac{k_{1}}{x_{1}} \cdot \frac{k_{2}}{x_{2}-x_{1}}}{\frac{k_{1}}{x_{1}}+\frac{k_{2}}{x_{2}-x_{1}}}\right) \Delta T_{\text {tot }}
\end{align*}
$$

The expression in parentheses is the effective conductivity per length, $\frac{k_{e f f}}{x_{2}}$.

4. Part D

Calculate $k_{\text {eff }}$ for a temperature difference of $\left(T_{R}-T_{L}\right)=30 \mathrm{~K}$, a total thickness $x_{2}=$ 30 cm and a rate of heat flow per surface area of $10 \mathrm{~W} / \mathrm{m}^{2}$. Applying equation 2, we have:

$$
\begin{equation*}
\frac{\left(\frac{d Q}{d t}\right)_{1}}{A}=\frac{-k_{e f f}\left(T_{R}-T_{L}\right)}{x_{2}} \tag{8}
\end{equation*}
$$

As the right side is at a higher temperature than the left side, the heat flow will be negative (to the left):

$$
\begin{align*}
-10 \mathrm{~W} / \mathrm{m}^{2} & =\frac{-k_{e f f} \cdot 30 \mathrm{~K}}{.30 \mathrm{~m}} \\
k_{e f f} & =.10 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \tag{9}
\end{align*}
$$

Problem 5 Rubric

20 pts total
a- find W : 5 pts

- 2 pts for isochoric processes, 1 for $W=0,1$ for explanation
- 3 pts for adiabatic processes
b- find $Q: 5 \mathrm{pts}$
- 2 pts for adiabatic processes, 1 for $Q=0,1$ for explanation
- 3 pts for isochoric processes
c- find $\Delta S: 5$ pts
- 2 pts for adiabatic processes, 1 for $\Delta S=0,1$ for explanation
- 3 pts for isochoric processes
d- find $e 5$ pts
- 2 pts for obtaining expression in terms of W's and Q's
- 2 pts for using $P V^{\gamma}=$ constant
- 1 pt for simplifying final expression

Problem 5

- state a: pressure P_{a} and volume V_{a}
- state b: pressure P_{b} and volume V_{b}
- state c: pressure P_{c} and volume $V_{c}=V_{b}$
- state d: pressure P_{d} and volume $V_{d}=V_{a}$
- degrees of freedom: $d=5 \quad \therefore \gamma=\frac{d+2}{d}=7 / 5$
a- find W
- $(a \rightarrow b)$ and $(c \rightarrow d)$ are adiabatic

$$
\begin{gathered}
\therefore Q=0 \quad \Delta E=Q-W=-W \\
W=-\Delta E=\frac{-d}{2} n R \Delta T=\frac{-d}{2} \Delta(P V)=\frac{-d}{2}\left(P_{f} V_{f}-P_{0} V_{0}\right)=\frac{5}{2}\left(P_{0} V_{0}-P_{f} V_{f}\right) \\
W_{a b}=\frac{5}{2}\left(P_{a} V_{a}-P_{b} V_{b}\right) \quad W_{c d}=\frac{5}{2}\left(P_{c} V_{b}-P_{d} V_{a}\right)
\end{gathered}
$$

- $(b \rightarrow c)$ and $(d \rightarrow a)$ are isochoric

$$
\therefore d V=0 \quad W_{b c}=0 \quad W_{d a}=0
$$

b- find Q

- $(a \rightarrow b)$ and $(c \rightarrow d)$ are adiabatic, by definition

$$
Q_{a b}=0 \quad Q_{c d}=0
$$

- $(b \rightarrow c)$ and $(d \rightarrow a)$

$$
\begin{gathered}
Q=n C_{v} \Delta T \text { for constant } V \\
Q=\frac{d}{2} n R \Delta T=\frac{d}{2} V \Delta P=\frac{5}{2} V\left(P_{f}-P_{0}\right) \\
Q_{b c}=\frac{5}{2} V_{b}\left(P_{c}-P_{b}\right) \quad Q_{d a}=\frac{5}{2} V_{a}\left(P_{a}-P_{d}\right)
\end{gathered}
$$

c- find ΔS

- $(a \rightarrow b)$ and $(c \rightarrow d)$

$$
\begin{gathered}
Q=0 \therefore \Delta S=\int \frac{d Q}{T}=0 \\
\Delta S_{a b}=0 \quad \Delta S_{c d}=0
\end{gathered}
$$

- $(b \rightarrow c)$ and $(d \rightarrow a)$

$$
\begin{aligned}
& \Delta S=\int \frac{d Q}{T}=\int_{T_{0}}^{T_{f}} \frac{(d / 2) n R d T}{T}=\frac{d}{2} n R \ln \left(\frac{T_{f}}{T_{0}}\right) \\
& \text { isobaric } \therefore T_{f} / T_{0}=P_{f} / P_{0} \quad \Delta S=\frac{5}{2} n R \ln \left(\frac{P_{f}}{P_{0}}\right) \\
& \Delta S_{b c}=\frac{5}{2} n R \ln \left(\frac{P_{c}}{P_{b}}\right) \quad \Delta S_{d a}=\frac{5}{2} n R \ln \left(\frac{P_{a}}{P_{d}}\right)
\end{aligned}
$$

d- find e

$$
e=\frac{W_{n e t}}{Q_{i n}}=\frac{W_{a b}+W_{c d}}{Q_{b c}}=\frac{(5 / 2)\left(P_{a} V_{a}-P_{b} V_{b}\right)+(5 / 2)\left(P_{c} V_{b}-P_{d} V_{a}\right)}{(5 / 2) V_{b}\left(P_{c}-P_{b}\right)}=\frac{-V_{a}\left(P_{d}-P_{a}\right)+V_{b}\left(P_{c}-P_{b}\right)}{V_{b}\left(P_{c}-P_{b}\right)}
$$

For the adiabatic processes

$$
\begin{gathered}
P_{a} V_{a}^{\gamma}=P_{b} V_{b}^{\gamma} \rightarrow P_{a}=P_{b} V_{b}^{\gamma} / V_{a}^{\gamma} \\
P_{c} V_{c}^{\gamma}=P_{d} V_{d}^{\gamma} \rightarrow P_{d}=P_{c} V_{c}^{\gamma} / V_{d}^{\gamma}=P_{c} V_{b}^{\gamma} / V_{a}^{\gamma}
\end{gathered}
$$

Substitute expressions for P_{a} and P_{d} in efficiency expression above

$$
e=\frac{-V_{a}\left(V_{b}^{\gamma} / V_{a}^{\gamma}\right)\left(P_{c}-P_{b}\right)+V_{b}\left(P_{c}-P_{b}\right)}{V_{b}\left(P_{c}-P_{b}\right)}
$$

Cancel out $\left(P_{c}-P_{b}\right)$ and simplify

$$
e=\frac{V_{b}-V_{b}^{\gamma} V_{a}^{1-\gamma}}{V_{b}}=1-\left(\frac{V_{b}}{V_{a}}\right)^{\gamma-1}=1-\left(\frac{V_{b}}{V_{a}}\right)^{2 / 5}
$$

