EE143 Microfabrication Technology

Spring 2012
Prof. J. Bokor

Midterm Exam 1
Name:

Signature:

SID:

\qquad

[^0]TIME ALLOTTED: 80 MINUTES

1. Lithography ($\mathbf{2 5}$ points)

Assume a photoresist has the following contrast curve, including top loss:

a. Is this positive or negative photoresist? (3 points)
negative
b. We will use this photoresist as an etch mask for RIE etching of Si . The etch process has a silicon-to-photoresist selectivity of $10: 1$. If we want to etch $3 \mu \mathrm{~m}$ into the Si plus a 15% overetch, what is the minimum thickness of photoresist we should spin onto the wafer? (5 points)

$$
\begin{aligned}
& \text { we noel to etch } 1.15 \times 3 \text { am }=3.45 \mathrm{san} 5 \text { i } \\
& \text { This would etch } 345 \mathrm{~nm} \text { of resist } \\
& \text { Due to } 20 \% \text { top } 1055 \text {, we need } \\
& \text { a minimum of } 345 \mathrm{~nm} / 8=431 \mathrm{~nm}
\end{aligned}
$$

contact tethography
c. When we align a mask to a previous layer on a 150 mm wafer at room temperature ($20^{\circ} \mathrm{C}$), we get the following alignment errors (in $\mu \mathrm{m}$):

	Top	Right	Center	Left	Bottom
\mathbf{X}	-1.6	-1.3	-1.1	-0.9	-0.6
\mathbf{Y}	0.6	1.3	0.8	0.3	1.0
(anam). (in rad)					

What are the translational, rotational, and thermal run-in/run-out errors? At what temperature should we be exposing our wafer? (The linear expansion coefficient of the glass reticle is $8.5 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and that of Si is $3 \times 10^{-6} /{ }^{\circ} \mathrm{C}$) (12 points)
Assume Center error is translational.

$$
\begin{aligned}
& \text { So translation error }(x, y)=(-1.1,0.8)
\end{aligned}
$$

rotational error is
$0.5 \mu \mathrm{n}$ contercoakwise
rotation angle

$$
\begin{aligned}
& \delta_{R}=r * \Delta T\left(\alpha_{\text {max }}-\alpha_{\Delta i}\right) \quad \text { runoot } r \equiv \text { water radios } \\
& \Delta T=\delta_{k} / r\left(L_{\text {rank }}-\alpha_{s_{i}}\right) \\
& =\left(-0.2 \times 10^{-6}\right) /\left[\left(725 \times 0^{-3}\right)(8.5-3) \times 10^{-6}\right]=-0.48 \mathrm{C}
\end{aligned}
$$

need to compensate so raise temp to .48C to $20,48 \mathrm{C}$
d. What is optical proximity correction? Illustrate using a diagram. (5 points)

OPC involve adding auxiliary feature on the mask to compensate for the lack of perfect fidelity in the photoresist image of the musk

mask

after adding OPC

2. Choosing Stepper and Designing Mask ($\mathbf{2 5}$ points)

A 100 nm thick layer of SiO 2 is to be processed using photolithography. The final structure that is desired is shown in the figure below. You need to choose a stepper and design a mask for this structure. Assume you will use a 300 -nm-thick layer of positive photoresist for lithography, followed by anisotropic plasma etching to etch the SiO_{2}.

Three optical steppers are available with following specifications:

Stepper	Photon Source (Wavelength)	Resolution Coefficient $\left(\mathrm{k}_{1}\right)$	Depth of Focus Coefficient $\left(\mathrm{k}_{2}\right)$	Numerical Aperture (NA)	Reduction Rate
Stepper A	I-line (365 nm)	0.8	0.5	0.6	4 x
Stepper B	KrF Excimer Laser (248 nm)	0.7	0.6	0.7	5 x
Stepper C	ArF Excimer Laser (193 nm)	0.7	0.4	0.8	5 x

a. Calculate the resolution and the depth of focus for each stepper. (6 points)
stepper A

$$
\begin{aligned}
& R=K_{1} \frac{\lambda}{N A}=487 \mathrm{~nm} \\
& D O F=K_{2} \frac{\lambda}{N A^{2}}=507 \mathrm{~mm}
\end{aligned}
$$

stepper B

$$
\begin{aligned}
& R=248 \mathrm{~nm} \\
& D O F=304 \mathrm{~nm} \\
& R=169 \mathrm{~nm} \\
& D O F=120 \mathrm{~nm}
\end{aligned}
$$

$$
\text { stepper } \quad R=\frac{169 \mathrm{~nm}}{120 \mathrm{Mm}}
$$

b. Which stepper will you choose for your process? Why? (9 points)

c. Draw the mask layout to fabricate the given structure. (Specify dark and clear areas and dimensions.) (10 points)

3. Etching ($\mathbf{1 5}$ points)

Consider the cross-section below.

a. We etch the $\mathrm{Si}_{3} \mathrm{~N}_{4}$ with hot phosphoric acid, which etches isotropically at 10 $\mathrm{nm} / \mathrm{min}$. Selectivity to SiO_{2} is $10: 1$ and to Si is $30: 1$. Sketch the cross section
after 35 min . (5 points)
after 32 min , the mi trice is etched through. After 3 more min sum of oxide and in of S_{i} is etched

b. Instead of using hot phosphoric acid, we etch the $\mathrm{Si}_{3} \mathrm{~N}_{4}$ using a perfectly anisotropic RIE, which has an etch rate of $10 \mathrm{~nm} / \mathrm{min}$. Selectivity to SiO_{2} is $10: 1$ and to Si is $30: 1$. Sketch the cross section after 35 min . (5 points)

c. Consider the following cross section.

The poly thickness of 300 nm varies by $\pm 20 \%$ over the wafer surface. If the average RIE etch rate is $25 \mathrm{~nm} / \mathrm{min}$ but varies by $\pm 4 \%$ across the wafer, what etch time should you use to be sure to clear the poly layer across the entire wafer? (5 points)
worst case poly thickness is $300 \times 1.2=360 \mathrm{~nm}$ worst case etch rate is $25 \times 0.96=24 \mathrm{~mm} / \mathrm{min}$ time $=\frac{360}{24}=15 \mathrm{~min}$

4. Lab related ($\mathbf{3 5}$ points)

a. Here is a drawing of part of the mask we use in the EE143 lab.

After exposing this mask on your wafer and etching your field oxide with HF, this pattern looks like this:

What went wrong with your etch, assuming the exposure of the photoresist was correct? (5 points)
HFefch was too long.
b. Now suppose that at the end of active region lithography step, you observe the following pattern in the resist. What might have caused this? What precaution would you take to avoid this? (10 points)

There is contamination on the mask.
 mask before exposure.
c. List three items of personal protective equipment that you should wear when you are handling corrosive chemicals. (6 points)

d. Do you use pyrex or plastic beakers for HF? Why? (4 points)

$$
\begin{aligned}
& \text { plastic. } \\
& H F \text { eccles pyrex }
\end{aligned}
$$

e. While wet etching the field oxide on your wafer using HF, you accidentally splash some of the acid. Some of it splashes onto your shoes, and you are not sure if it penetrates to your skin. You do not feel any burning sensation. What should you do? (10 points)

[^0]: CLOSED BOOK. ONE $81 / 2 "$ X 11 " SHEET OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. MAKE SURE THE EXAM PAPER HAS 12 PAGES. DO ALL WORK ON THE EXAM PAGES. USE THE BACK OF PAGES IF NECESSARY.

