UNIVERSITY OF CALIFORNIA, BERKELEY

MECHANICAL ENGINEERING

ME106 Fluid Mechnics
1st Test, S12 Prof S. Morris

1. (65) Far from the spinning cylinder, the air of density ρ has uniform velocity $V_{o} \mathbf{i}$ and pressure p_{o}. On the cylinder, the pressure is given as a function of angle ϕ by $p(\phi)-p_{o}=-4 \rho V_{0}^{2}(J+\sin \phi)^{2}$; J is a given constant. The aim is to find the component of the resultant pressure force acting parallel to the free stream $V_{o} \mathbf{i}$.

unit length out of page
(a) Derive the expression giving F_{x} as an integral of $p(\phi)$ with respect to ϕ.
(b) Evaluate your integral to determine F_{x}.
(c) On a single sketch, show $J+\sin \phi$ and $(J+\sin \phi)^{2}$ as functions of ϕ; then interpret your answer to part (b) using that sketch. For full credit, all curves and axes on your sketch must be clearly labeled.

Given: $n(\cos \phi)\left(\sin ^{n-1} \phi\right)=\frac{d}{d \phi}\left(\sin ^{n} \phi\right)$
2. (65) (a) Write the formula for the material derivative $\frac{d f}{d t}$ of an arbitrary function $f(x, y, z, t)$.
(b) Using the formula from part (a), evaluate $\frac{d x}{d t}$; to receive credit, you must explain briefly the values you give to each term in the expression for $\frac{d x}{d t}$.
(c) For the flow given by $\mathbf{V}=(K x+L y) \mathbf{i}+(L x-K y) \mathbf{j}$, find the fluid acceleration \mathbf{a}. (Hint: a $\| \mathbf{r}$.)
3. (70) At point 1 on the surface of the airfoil, the pressure p is given by $\left(p-p_{\infty}\right) /\left(\frac{1}{2} \rho V_{\infty}^{2}\right)=-3$. Find the ratio of the flow speed at that point to V_{∞}. To receive credit, you must explain your logic; a formula and a number is not enough.

