UNIVERSITY OF CALIFORNIA, BERKELEY MECHANICAL ENGINEERING ME106 Fluid Mechnics 1st Test, S12 Prof S. Morris

1. (65) Far from the spinning *cylinder*, the air of density ρ has uniform velocity $V_o \mathbf{i}$ and pressure p_o . On the cylinder, the pressure is given as a function of angle ϕ by $p(\phi) - p_o = -4\rho V_0^2 (J + \sin \phi)^2$; *J* is a given constant. The aim is to find the component of the resultant pressure force acting *parallel* to the free stream $V_o \mathbf{i}$.

(a) Derive the expression giving F_x as an integral of $p(\phi)$ with respect to ϕ .

(b) Evaluate your integral to determine F_x .

(c) On a single sketch, show $J + \sin \phi$ and $(J + \sin \phi)^2$ as functions of ϕ ; then interpret your answer to part (b) using that sketch. For full credit, all curves and axes on your sketch must be clearly labeled.

Given: $n(\cos\phi)(\sin^{n-1}\phi) = \frac{d}{d\phi}(\sin^n\phi)$

2. (65) (a) Write the formula for the material derivative $\frac{df}{dt}$ of an arbitrary function f(x, y, z, t).

(b) Using the formula from part (a), evaluate $\frac{dx}{dt}$; to receive credit, you must explain briefly the values you give to each term in the expression for $\frac{dx}{dt}$. (c) For the flow given by $\mathbf{V} = (Kx + Ly)\mathbf{i} + (Lx - Ky)\mathbf{j}$, find the fluid acceleration **a**. (Hint: **a** || **r**.) **3. (70)** At point 1 on the surface of the airfoil, the pressure p is given by $(p - p_{\infty})/(\frac{1}{2}\rho V_{\infty}^2) = -3$. Find

the ratio of the flow speed at that point to V_{∞} . To receive credit, you must explain your logic; a formula and a number is not enough.

