ME 109 Midterm 1 Solutions
1.)

The two-material wall can be depicted as two resistors in series, while the thin film heater adds a heat flux at the border where the two materials meet:

From an energy balance: $q_{1}{ }^{\prime \prime}+q_{2}{ }^{\prime \prime}=q^{\prime \prime}$
$\mathrm{q}_{1}{ }^{\prime \prime}=\frac{T_{3}-T_{1}}{L / k_{1}}, \quad \mathrm{q}_{2^{\prime \prime}}=\frac{T_{3}-T_{2}}{L / k_{2}}$
$\mathrm{q}^{\prime \prime}=\frac{T_{3}-T_{1}}{L / k_{1}}+\frac{T_{3}-T_{2}}{L / k_{2}}$
$q^{\prime \prime} L+T_{1} k_{1}+T_{2} k_{2}=T_{3}\left(k_{1}+k_{2}\right)$
$T_{3}=\left(q^{\prime \prime} L+T_{1} k_{1}+T_{2} k_{2}\right) /\left(k_{1}+k_{2}\right)$
$=\left[10^{6} \mathrm{~W} / \mathrm{m}^{2}(0.01 \mathrm{~m})+\left(100^{\circ} \mathrm{C}\right)(20 \mathrm{~W} / \mathrm{mK})+20^{\circ} \mathrm{C}(5 \mathrm{~W} / \mathrm{mK})\right] /(25 \mathrm{~W} / \mathrm{mK})=484^{\circ} \mathrm{C}$
2.)

First check to see if lumped capacitance can be used to solve the problem:
$\mathrm{Bi}=\left(\mathrm{h} \mathrm{L}_{\mathrm{c}}\right) / \mathrm{k}=\left(\mathrm{hr}_{0} / 3\right) / \mathrm{k}=\left[\left(100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right)(1.5 \mathrm{~cm} / 3)\right] / 1 \mathrm{~W} / \mathrm{mK}=0.5$
$0.5<0.1 \rightarrow$ Lumped capacitance cannot be used
Check to see if the approximate analytical solutions can be used:

$$
\mathrm{F}_{\mathrm{o}}=\alpha \mathrm{t} / \mathrm{r}_{\mathrm{o}}{ }^{2}=1.33>0.2 \rightarrow \text { One term approximations are okay to use }
$$

For a sphere:

$$
\begin{aligned}
& \theta_{o}^{*}=\frac{T(r=0)-T_{\infty}}{T_{i}-T_{\infty}}=C_{1} \exp \left(-\zeta_{1}^{2} F_{o}\right) \\
& \theta^{*}=\frac{T\left(r^{*}\right)-T_{\infty}}{T_{i}-T_{\infty}}=\theta_{o}^{*} \frac{1}{\zeta_{1} r^{*}} \sin \left(\zeta_{1} r^{*}\right)
\end{aligned}
$$

Where $r^{*}=r / r_{0}=r /(1.5 \mathrm{~cm})$
To get C_{1} and ζ_{1}, calculate Bi and look up values in Table 5.1

$$
\text { Use } \mathrm{Bi}=\left(\mathrm{hr} r_{0}\right) / \mathrm{k}=1.5
$$

From Table 5.1:

$$
\begin{aligned}
& \text { For } \mathrm{Bi}=1.0 \rightarrow \zeta_{1}=1.5708, \mathrm{C}_{1}=1.2732 \\
& \text { For } \mathrm{Bi}=2.0 \rightarrow \zeta_{1}=2.0288, \mathrm{C}_{1}=1.4793
\end{aligned}
$$

Interpolate to get:

$$
\text { For } \mathrm{Bi}=1.5 \rightarrow \zeta_{1}=1.7998, \mathrm{C}_{1}=1.3763
$$

$\theta_{o}^{*}=\frac{T(r=0)-T_{\infty}}{T_{i}-T_{\infty}}=C_{1} \exp \left(-\zeta_{1}^{2} F_{o}\right)=0.0183 \rightarrow \mathrm{~T}(\mathrm{r}=0)=294.87^{\circ} \mathrm{C}$
$\theta^{*}\left(r^{*}=\frac{1 \mathrm{~cm}}{1.5 \mathrm{~cm}}\right)=\frac{T\left(r^{*}\right)-T_{\infty}}{T_{i}-T_{\infty}}=\theta_{o}^{*} \frac{1}{\zeta_{1} r^{*}} \sin \left(\zeta_{1} r^{*}\right)=0.0142 \rightarrow \mathrm{~T}(\mathrm{r}=1 \mathrm{~cm})=296.015^{\circ} \mathrm{C}$
Energy out of the sphere is Q :

$$
\begin{aligned}
& \frac{Q}{Q_{o}}=1-\frac{3 \theta_{o}^{*}}{\zeta_{1}^{3}}\left[\sin \left(\zeta_{1}\right)-\zeta_{1} \cos \left(\zeta_{1}\right)\right]=0.9870 \\
& Q_{o}=\rho c V\left(T_{i}-T_{\infty}\right)=\left(\frac{k}{\alpha}\right) V\left(T_{i}-T_{\infty}\right)(\text { from } \alpha=\mathrm{k} /(\rho \mathrm{c})) \\
& \quad=-3.958 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

$Q=-3.906 \times 10^{3} \mathrm{~J} \rightarrow$ Energy into the sphere is $3.906 \times 10^{3} \mathrm{~J}$
3.)

The problem can be simplified by just looking at half of the fin and using symmetry to make the end insulated as shown below:

For an adiabatic tip condition, q_{f} can be determined (given in Table 3.4):

$$
\mathrm{q}_{\mathrm{f}}=\mathrm{M} \tanh (\mathrm{~mL}), \mathrm{M}=\sqrt{h P k A_{c}} \theta_{b}, \quad m=\sqrt{\frac{h P}{k A_{c}}}
$$

using $P=2 \pi r, A_{c}=\pi r^{2}$, and $\theta_{b}=T_{o}-T_{\text {inf }}$:

$$
q_{f}=11.75 \mathrm{~W}
$$

$$
2 q_{f}=\text { total heat to } \mathrm{fin}=23.5 \mathrm{~W}
$$

