Introduction to Solid Mechanics

 ME C85/CE C30

 ME C85/CE C30}
Midterm Exam 1

Fall, 2011

1. Do not open this exam until you are told to begin.
2. Put your name and SID on every page.
3. You may not use a calculator, but you may use a straightedge to help you draw figures.
4. You may use one $8-1 / 2 \times 11$ sheet of notes, but not your book or any other notes.
5. Store everything else out of sight.
6. Turn off cell phones.
7. There will be no questions during the exam. Write your concerns or alternative interpretations in exam margins.
8. Write all answers in the space provided on this exam.
9. Be concise and write clearly. Identify your answer to a question by putting a box around it.
10. You may use the backs of pages for "scratch" paper, but if there is work that we should see, be sure to point that out in the main body of the exam.

Problem	Possible	Score
1	25	25
2	20	20
3	25	25
4	30	28
Total	100	

1. Consider a block of mass m resting on a rough horizontal surface. The coefficient of static friction between the block and the surface is μ_{s}. A vertical force F is applied at the upper righthand corner of the block, and is slowly increased until the block begins to move.
(a) (15 points) Determine the value of the force at which the block ceases to be in static equilibrium and begins to move.
(b) (10 points) Determine what motion (sliding or tipping) will occur if the force is just above that determined in part (a), and provide the reasoning that supports your answer.

Problem 1 (continued)
2. (20 points) We have dealt with pulleys in several homework problems, and have made an assumption that the tension in the cable is the same on either side of the pulley. Prove that this assumption is correct for an ideal pulley by showing that $F_{2}=F_{1}$. An ideal pulley is one that is able to rotate freely (without resistance) about its axis. The angle that the cable on either side of the pulley makes with some reference axis is arbitrary.

Problem 2 (continued)
3. The truss shown below is loaded by vertical forces of magnitude P at each of the joints along the top. All of the horizontal members of the truss are of length L, and the vertical member BC has length h.
(a) (10 points) Determine the reaction forces at points G (roller support) and J (pinned support).
(b) ($\mathbf{1 5}$ points) Determine the force in member DF. Be sure to indicate clearly whether it is in tension or compression.

a) Equilibrium of entire structure

$$
\begin{aligned}
\sum M_{J} & =(L)(P)+(2 L)(P)+(3 L) P \\
& +(4 L)(P)+(5 L)(P)-(2 L) G_{y} \\
& =0
\end{aligned}
$$

$$
3 h \quad P K+2 P Y+3 P K+4 P K+5 P K=2 G Y
$$

$$
15 P=2 G_{r}
$$

$$
\frac{15}{2} P=G_{y}
$$

$$
\Sigma F_{y}=-6 P+G_{y}+J_{y}=0
$$

$$
-6 P+\frac{15}{2} P=-J_{y}
$$

$$
-6 P+7.5 P=-J_{y}
$$

$$
-1.5 P=J_{y}
$$

Name \qquad SID

Problem 3 (continued)
$2 n$

$$
\text { b) Force } D F
$$

$$
\sum M_{E}=-D F(2 n)+P(6)+P(2 L)=0
$$

$$
\text { Section } \overleftarrow{k^{\prime}} k^{k^{\prime} G}
$$

$$
2 n D F=3 P L
$$

4. ($\mathbf{3 0}$ points) The square plate shown below can be treated as massless. It is supported at points A and B by a pin and a short link, respectively. It is loaded by equal and opposite forces F and $-\mathbf{F}$ at points C and D .

Determine the reaction forces acting on the plate at points A and B .

ME C85/CE C30

$$
M=F d=F L \cos \beta^{(c \omega)}
$$

couple reduces to a moment
Equilibrium equations:

$$
\sum M_{B}=-M-A_{\times} L=0
$$

$$
-M=A_{x} L
$$

$$
-F L \cos B=A x L
$$

$$
-F \cos B=A_{x}
$$

$$
\sum F_{x}=0: \quad A_{x}+B_{x}=0
$$

$$
T F \cos B=-B_{x}
$$

$$
\begin{aligned}
& B_{x}=B \cos B=B_{x} \\
& \begin{array}{l}
\cos 45^{\circ} \\
\frac{B x}{\cos 45^{\circ}}=\frac{F \cos 8}{1 / \sqrt{2}}=F \sqrt{2} \cos B=B
\end{array}
\end{aligned}
$$

Problem 4 (continued)

$$
\sum F y=0: \quad \begin{aligned}
A y+ & B \sin 45^{\circ}=0 \\
A y & =-B \sin 45^{\circ} \\
& =-(F \sqrt{2} \cos B)\left(\frac{1}{\sqrt{2}}\right) \\
& =-F \cos B
\end{aligned}
$$

$$
A: \quad \begin{aligned}
A & =\sqrt{A_{x}^{2}+A_{y}^{2}} \\
& =\sqrt{F^{2} \cos ^{2} B+F^{2} \cos ^{2} \beta} \\
& =\sqrt{2} F \cos \beta
\end{aligned}
$$

