Physics 137A: Second Midterm

Closed Book and Closed Notes: 50 Minutes

1) (20 pts) Review problem: A particle of mass m is confined in the half-infinite, half-finite square well of depth of $V o=|V o|$ and width a: $V(x)=\left\{\begin{array}{rr}\infty & x<0 \\ -V o & 0<x<a \\ 0 & a<x\end{array}\right.$

a) (4 pts) Assuming a bound state $(E<0)$, write down appropriate wave functions for the interior $(0<x<a)$ and exterior $(a<x)$ regions, taking into account the behavior of the wave function at $x=0$ and at $x=\infty$. Please denote the wave number for the region $0<x<a$ and $a<x$ by k and κ, respectively, defining these wave numbers in terms of E, m, \hbar, and $V o$.

Since the wave function must vanish at the origin and at infinity, the only possibilities are

$$
\phi(x)=\left\{\begin{array}{lc}
A \sin k x, & 0<x<a \\
B e^{-\kappa x} & x>a
\end{array}\right.
$$

where $\kappa=\sqrt{-2 m E} / \hbar$ and $k=\sqrt{2 m\left(E+V_{0}\right)} / \hbar$.
b) (4 pts) By matching the interior and exterior wave functions and their derivatives at the boundary $x=a$, determine the wave function up to one overall normalization constant and determine the eigenvalue condition.

$$
\begin{array}{r}
A \sin (k a)=B \exp (-\kappa a) \quad \rightarrow \quad B=A \sin (k a) \exp (\kappa a) \\
A k \cos (k a)=-B \kappa \exp (-\kappa a)=-A \kappa \sin (k a) \quad \rightarrow \quad-k \cot (k a)=\kappa
\end{array}
$$

$$
\phi(x)=\left\{\begin{array}{lc}
\text { so the wave function : } \\
A \sin k x, & 0<x<a \\
A \sin k a e^{\kappa(a-x)} & x>a
\end{array}\right.
$$

c) (4 pts$)$ By solving the eigenvalue equation for the case where there is only one bound state - which you should place at zero binding energy - determine the condition on the potential parameters (Vo and a) that will guarantee that at least one bound state exists.

$$
\begin{array}{r}
\kappa \rightarrow 0 \quad k \rightarrow \sqrt{2 m V_{0}} / \hbar \quad \text { so } \cot \left(\frac{a \sqrt{2 m V_{0}}}{\hbar}\right)=0 \\
\Rightarrow \sqrt{2 m V_{0}} \frac{a}{\hbar}=\frac{\pi}{2} \text { for exactly one zero - energy bound state } \\
\text { so } \Rightarrow a^{2} V_{0}>\frac{\pi^{2} \hbar^{2}}{8 m} \text { for bound states to exist }
\end{array}
$$

d) (4 pts) What is the relationship of this problem to the fully finite well problem of depth Vo and width $2 a$, centered on the origin (no calculations necessary here)?

The solutions of this problem are equivalent to the odd solutions of the square well problem: the eigenvalues are the same, and if the solution is merely extended as an odd function to negative $-x$, the wave functions would be the same.
e) (no calculations needed here, either) (4 pts) If we had kept the infinite potential for $x<0$, but used the potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ for $x>0$, what would be the resulting spectrum of allowed eigenvalues E_{n} ?

As in 4d), the solutions would satisfy the harmonic oscillator potential Hamiltonian for $x>0$ and would vanish at $x=0$. Thus the solutions would correspond to the odd solutions of the harmonic oscillator problem. The spectrum of all solutions is $E_{n}=\hbar \omega(n+1 / 2)$. This the odd solutions would have the spectrum $E_{n}=\hbar \omega(n+1 / 2), n=1,3,5, \ldots$ or equivalently $E_{n}=\hbar \omega(2 n+3 / 2), n=0,1,2, \ldots$
2. a) (4 pts) \hat{A} and \hat{B} are Hermitian operators. Express $(\hat{A} \hat{B})^{\dagger}$ in terms of \hat{A} and \hat{B} (that is, $\hat{\mathrm{A}}^{\dagger}$ and $\hat{\mathrm{B}}^{\dagger}$ should not appear in your final answer).

$$
\begin{equation*}
(\hat{\mathrm{A}} \hat{\mathrm{~B}})^{\dagger}=\hat{\mathrm{B}}^{\dagger} \hat{\mathrm{A}}^{\dagger}=\mathrm{B} \mathrm{~A} \tag{1}
\end{equation*}
$$

b) (6 pts) Determine whether the following operator combinations are Hermitian, again assuming $\hat{\mathrm{A}}$ and $\hat{\mathrm{B}}$ are Hermitian. (Please show a proof in each case.)

$$
\hat{\mathrm{A}} \hat{\mathrm{~B}}+\hat{\mathrm{B}} \hat{\mathrm{~A}}:(\hat{\mathrm{A}} \hat{\mathrm{~B}}+\hat{\mathrm{B}} \hat{\mathrm{~A}})^{\dagger}=\hat{\mathrm{B}}^{\dagger} \hat{\mathrm{A}}^{\dagger}+\hat{\mathrm{A}}^{\dagger} \hat{\mathrm{B}}^{\dagger}=\mathrm{B} \mathrm{~A}+\mathrm{AB}=\mathrm{A} \mathrm{~B}+\mathrm{B} \Rightarrow \text { Hermitian }
$$

$$
\hat{\mathrm{A}} \hat{\mathrm{~B}}-\hat{\mathrm{B}} \hat{\mathrm{~A}}:(\hat{\mathrm{A}} \hat{\mathrm{~B}}-\hat{\mathrm{B}} \hat{\mathrm{~A}})^{\dagger}=\hat{\mathrm{B}}^{\dagger} \hat{\mathrm{A}}^{\dagger}-\hat{\mathrm{A}}^{\dagger} \hat{\mathrm{B}}^{\dagger}=\mathrm{B} \mathrm{~A}-\mathrm{A}=-(\mathrm{A}-\mathrm{B}) \Rightarrow \text { not Hermitian }
$$

$$
i(\hat{\mathrm{~A}} \hat{\mathrm{~B}}-\hat{\mathrm{B}} \hat{\mathrm{~A}}):(i \hat{\mathrm{~A}} \hat{\mathrm{~B}}-i \hat{\mathrm{~B}} \hat{\mathrm{~A}})^{\dagger}=-i \hat{\mathrm{~B}}^{\dagger} \hat{\mathrm{A}}^{\dagger}+i \hat{\mathrm{~A}}^{\dagger} \hat{\mathrm{B}}^{\dagger}=-i(\mathrm{~B} \mathrm{~A}-\mathrm{A} \mathrm{~B})=i(\mathrm{~A} \mathrm{~B}-\mathrm{B} \mathrm{~A}) \Rightarrow \text { Hermitian }
$$

c) (5 pts) Show that if \hat{P} and \hat{Q} have a common, complete set of eigenvectors $\left\{f_{i}\right\}$, so that $\hat{P}\left|f_{p_{i}, q_{i}}\right\rangle=p_{i}\left|f_{p_{i}, q_{i}}\right\rangle$ and $\hat{Q}\left|f_{p_{i}, q_{i}}\right\rangle=q_{i}\left|f_{p_{i}, q_{i}}\right\rangle$ for all $\left|f_{i}\right\rangle \equiv\left|f_{p_{i}, q_{i}}\right\rangle$ in the Hilbert space, then $[\hat{P}, \hat{Q}]=0$.

Let $\left|f_{i}\right\rangle \equiv\left|f_{p_{i}, q_{i}}\right\rangle$ represent any eigenvector in the complete Hilbert space. Then

$$
\begin{equation*}
\hat{P} \hat{Q}\left|f_{p_{i}, q_{i}}\right\rangle=\hat{P} q_{i}\left|f_{p_{i}, q_{i}}\right\rangle=q_{i} \hat{P}\left|f_{p_{i}, q_{i}}\right\rangle=q_{i} p_{i}\left|f_{p_{i}, q_{i}}\right\rangle \tag{2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\hat{Q} \hat{P}\left|f_{p_{i}, q_{i}}\right\rangle=\hat{Q} p_{i}\left|f_{p_{i}, q_{i}}\right\rangle=p_{i} \hat{Q}\left|f_{p_{i}, q_{i}}\right\rangle=p_{i} q_{i}\left|f_{p_{i}, q_{i}}\right\rangle \tag{3}
\end{equation*}
$$

Subtracting $\Rightarrow[\hat{P}, \hat{Q}]\left|f_{p_{i}, q_{i}}\right\rangle=0\left|f_{p_{i}, q_{i}}\right\rangle$ for all states in the Hilbert space $\Rightarrow[\hat{P}, \hat{Q}]=0$.
3. Consider a two-level system with basis states $|1\rangle=\binom{1}{0}$ and $|2\rangle=\binom{0}{1}$. The Hamiltonian matrix in this basis is $H=\left(\begin{array}{cc}0 & E \\ E & 0\end{array}\right)$; alternatively, $\hat{H}=E(|1\rangle\langle 2|+|2\rangle\langle 1|)$. a) (5 pts) Find the eigenvalues of H and the corresponding stationary states.

The eigenvalue equation is $\lambda^{2}-E^{2}=0 \Rightarrow \lambda= \pm E$. The eigenvectors $\left|s_{ \pm}\right\rangle$can be expanded in the same basis with coefficients to be determined, $|s \pm\rangle=a_{ \pm}|1\rangle+b_{ \pm}|2\rangle$.
$H\left|s_{+}\right\rangle=E(|1\rangle\langle 2|+|2\rangle\langle 1|)\left(a_{+}|1\rangle+b_{+}|2\rangle\right)=E\left(b_{+}|1\rangle+a_{+}|2\rangle\right)=E\left|s_{+}\right\rangle=E\left(a_{+}|1\rangle+b_{+}|2\rangle\right)$
$H\left|s_{-}\right\rangle=E(|1\rangle\langle 2|+|2\rangle\langle 1|)\left(a_{-}|1\rangle+b_{-}|2\rangle\right)=E\left(b_{-}|1\rangle+a_{-}|2\rangle\right)=-E\left|s_{-}\right\rangle=-E\left(a_{-}|1\rangle+b_{-}|2\rangle\right)$
Thus we find the normalized eigenvectors (stationary states)

$$
\begin{equation*}
\left|s_{+}\right\rangle=\frac{1}{\sqrt{2}}|1\rangle+\frac{1}{\sqrt{2}}|2\rangle \quad\left|s_{-}\right\rangle=\frac{1}{\sqrt{2}}|1\rangle-\frac{1}{\sqrt{2}}|2\rangle \tag{4}
\end{equation*}
$$

b) (5 pts) Suppose at time $t=0$ the system is prepared in the state $|S(t=0)\rangle=|1\rangle$. Find $|S(t)\rangle$, the solution of the time-dependent Schroedinger equation. Express the result as

$$
|S(t)\rangle=|1\rangle\langle 1 \mid S(t)\rangle+|2\rangle\langle 2 \mid S(t)\rangle
$$

That is, determine $\langle 1 \mid S(t)\rangle$ and $\langle 2 \mid S(t)\rangle$ as simple functions of t, E, and \hbar.
From above it is immediate that $|S(0)\rangle>=|1\rangle=\frac{1}{\sqrt{2}}\left|s_{+}\right\rangle+\frac{1}{\sqrt{2}}\left|s_{-}\right\rangle$. Consequently, plugging in the stationary state time dependence,

$$
\begin{aligned}
|S(t)\rangle> & =\frac{1}{\sqrt{2}}\left|s_{+}\right\rangle e^{-i E t / \hbar}+\frac{1}{\sqrt{2}}\left|s_{-}\right\rangle e^{i E t / \hbar} \\
& =\frac{1}{2}(|1\rangle+|2\rangle) e^{-i E t / \hbar}+\frac{1}{2}(|1\rangle-|2\rangle) e^{i E t / \hbar}=\cos \left(\frac{E t}{\hbar}\right)|1\rangle-i \sin \left(\frac{E t}{\hbar}\right)|2\rangle
\end{aligned}
$$

c) (5 pts) Using the above result, calculate the probabilities $P_{1}(t)$ and $P_{2}(t)$ that a measurement will find that the system $|S(t)\rangle$ in state $|1\rangle$ and state $|2\rangle$, respectively. Hint: check that your calculation satisfies $P_{1}(t)+P_{2}(t)=1$.

$$
P_{1}(t)=|\langle 1 \mid S(t)\rangle|^{2}=\cos ^{2}\left(\frac{\mathrm{Et}}{\hbar}\right) \quad P_{2}(t)=|\langle 2 \mid S(t)\rangle|^{2}=\sin ^{2}\left(\frac{\mathrm{Et}}{\hbar}\right)
$$

4. a) (5 pts) A nuclear excited state with a most probable energy E decays with a lifetime $\tau_{m} \sim \Delta t=10^{-15} \mathrm{~s}$. What constraint does the energy uncertainty principle place on ΔE ? (Give the answer in eV , using $\hbar=6.58 \times 10^{-16} \mathrm{eV}$ s.)

$$
\Delta E \Delta t \geq \frac{\hbar}{2} \Rightarrow \Delta E \geq \frac{6.58 \times 10^{-16} \mathrm{eVs}}{2 \times 10^{-15} \mathrm{~s}}=0.329 \mathrm{eV}
$$

b) (5 pts) Apply the generalized uncertainty principle, $\sigma_{A}^{2} \sigma_{B}^{2} \geq\left(\frac{1}{2 i}\langle[\hat{A}, \hat{B}]\rangle\right)^{2}$, to the operators $\hat{A}=\hat{x}$ and $\hat{B}=\hat{H}=\hat{p}^{2} / 2 m+\hat{V}$ to determine $\sigma_{x} \sigma_{H}$. (Hint: your answer should involve $\langle\hat{p}\rangle$.)

$$
\begin{gathered}
{[\hat{x}, \hat{H}]=x\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)\right)-\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)\right) x=\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x^{2}} x-x \frac{d^{2}}{d x^{2}}\right)=\frac{\hbar^{2}}{m} \frac{d}{d x}=\frac{i \hbar}{m} \hat{p}} \\
\Rightarrow \sigma_{x}^{2} \sigma_{H}^{2} \geq\left(\frac{1}{2 i}\langle[\hat{x}, \hat{H}]\rangle\right)^{2}=\left(\frac{\hbar}{2 m}\langle\hat{p}\rangle\right)^{2} \\
\sigma_{x} \sigma_{H} \geq \frac{\hbar}{2 m}|\langle\hat{p}\rangle|
\end{gathered}
$$

c) (5pts) Return to 3b). Using the operator $\hat{Q}=|1\rangle\langle 1|$ and the expression

$$
\frac{d}{d t}\langle\hat{Q}\rangle=\frac{i}{\hbar}\langle[\hat{H}, \hat{Q}]\rangle+\left\langle\frac{\partial Q}{\partial t}\right\rangle
$$

where the expectation value is taken with respect to the state $|S(t)\rangle$, derive an expression for $d P_{1}(t) / d t$. Is it consistent with what you would calculate directly from your answer in 3c)?

$$
\begin{aligned}
& \frac{d}{d t}\langle S(t) \mid 1\rangle\langle 1 \mid S(t)\rangle=\frac{d}{d t}|\langle 1 \mid S(t)\rangle|^{2} \equiv \frac{d P_{1}(t)}{d t} \\
& \frac{i}{\hbar}\langle S(t)|[\hat{H},|1\rangle\langle 1|]|S(t)\rangle=\frac{i}{\hbar}(\langle S(t)| \hat{H}|1\rangle\langle 1 \mid S(t)\rangle-\langle S(t) \mid 1\rangle\langle 1| H|S(t)\rangle) \\
&=\frac{i E}{\hbar}(\langle S(t) \mid 2\rangle\langle 1 \mid S(t)\rangle-\langle S(t) \mid 1\rangle\langle 2 \mid S(t)\rangle)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\frac{d P_{1}(t)}{d t}=\frac{i E}{\hbar}\left(2 i \sin \left(\frac{E t}{\hbar}\right) \cos \left(\frac{E t}{\hbar}\right)\right)=-\frac{2 E}{\hbar} \sin \left(\frac{E t}{\hbar}\right) \cos \left(\frac{E t}{\hbar}\right)=-\frac{E}{\hbar} \sin \left(\frac{2 E t}{\hbar}\right) \tag{5}
\end{equation*}
$$

We have used $\hat{H}=E(|1\rangle\langle 2|+|2\rangle\langle 1|)$ in the above. Indeed, this is the same answer we get by taking the derivative of the answer in 3 c).

