Stat134, Lec 3: Midterm I Solutions

Problem 1: (a) Let X be the number of people who prefer Candidate A.

$$
\mathbb{P}(530 \leq X \leq 570)=\sum_{k=530}^{570}\binom{1000}{k} p^{k}(1-p)^{1000-k}
$$

(b)Using the Normal Approximation Method, $\mu=1000 p$ and $\sigma=\sqrt{1000 p(1-p)}$.

$$
\mathbb{P}(530 \leq X \leq 570) \approx \Phi\left(\frac{570+.5-1000 p}{\sqrt{1000 p(1-p)}}\right)-\Phi\left(\frac{530-.5-1000 p}{\sqrt{1000 p(1-p)}}\right)
$$

To find the maximum point, take the derivative of the above expression and let it be 0 :

$$
\begin{aligned}
& \phi\left(\frac{570+.5-1000 p}{\sqrt{1000 p(1-p)}}\right)\left[\frac{141 p-570.5}{2 \sqrt{1000}(p(1-p))^{3 / 2}}\right]-\phi\left(\frac{530-.5-1000 p}{\sqrt{1000 p(1-p)}}\right)\left[\frac{59 p-529.5}{2 \sqrt{1000}(p(1-p))^{3 / 2}}\right]=0 \\
& \Rightarrow \exp \left\{-\frac{410 \sqrt{10}(0.55-p)}{p(1-p)}\right\}=\frac{59 p-529.5}{141 p-570.5} \\
& \Rightarrow p \approx 0.5501
\end{aligned}
$$

\# Although it's computationally hard, the idea is simple.
(c) Since $\Phi(-2,2) \approx 95 \%$, the largest "reasonable" p is corresponding to the point such that $\frac{570+.5-1000 p}{\sqrt{1000 p(1-p)}}=-2$ and the smallest "reasonable" p is corresponding to the point such that $\frac{530-.5-1000 p}{\sqrt{1000 p(1-p)}}=2$.

So the range of "reasonable" p is approximately $[0.50,0.60]$
Problem 2: (a) $\binom{365}{k}\left(\frac{1}{365}\right)^{k}\left(\frac{364}{365}\right)^{365-k}$
(b) In this case, $n=365, p=1 / 365$, so $\mu=n p=1$
(c)(d)(e)
$\mathbb{P}\left(\right.$ Total $\#$ of successes fro E_{1} and E_{2} together is $\left.k\right)$
$=\sum_{i=0}^{k} \mathbb{P}\left(E_{1}\right.$ has i successes $) \mathbb{P}\left(E_{2}\right.$ has $k-i$ successes $)$
$=\sum_{i=0}^{k} e^{-1} \frac{1}{i!} e^{-1} \frac{1}{(k-i)!}=e^{-2} \frac{1}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!}$
$=e^{-2} \frac{1}{k!} \sum_{i=0}^{k}\binom{k}{i}=e^{-2} \frac{1}{k!} 2^{k} \quad$ (by the Binomial Formula)
which has Poisson distribution with parameter $\lambda=2$.

$$
\mathbb{P}(1)=2 e^{-2}, \mathbb{P}(2)=2 e^{-2}, \mathbb{P}(3)=\frac{4}{3} e^{-2}, \mathbb{P}(4)=\frac{2}{3} e^{-2}, \mathbb{P}(5)=\frac{4}{15} e^{-2}
$$

Problem 3:

$\mathbb{P}($ exactly 2 people have the same birthday $)=\binom{n}{2} \frac{365 \cdot 1 \cdot 364 \cdots(364-(n-2)+1)}{365^{n}}$

Problem 4: (a)

$$
\begin{aligned}
& \mathbb{P}(+,+, @, @, *)=\frac{\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{44}{1}}{\binom{52}{5}} \\
& \mathbb{P}(+,+,+, @, @)=\frac{13 \cdot 12 \cdot\binom{4}{2}\binom{4}{3}}{\binom{52}{5}} \\
& \mathbb{P}(+,+,+,+, @)=\frac{13 \cdot\binom{4}{4}\binom{48}{1}}{\binom{52}{5}}
\end{aligned}
$$

(b) \mathbb{P} (both hands have at least one pair)
$=1-\mathbb{P}(1$ st hand has no pair $)-\mathbb{P}(2$ nd hand has no pair $)+\mathbb{P}$ (both hands have no pair $)$
$\mathbb{P}(1$ st hand has no pair $)=\mathbb{P}(2$ nd hand has no pair $)=\frac{\binom{13}{5}\binom{4}{1}^{5}}{\binom{52}{5}} \approx 0.5071$
\mathbb{P} (both hands have no pair)
$=\mathbb{P}(1$ st hand has no pair $) \mathbb{P}(2$ nd hand has no pair $\mid 1$ st hands has no pair $)$
$=\frac{\binom{13}{5}\binom{4}{1}^{5}}{\binom{52}{5}} \frac{\sum_{k=0}^{5}\binom{8}{5-k}\binom{4}{1}^{5-k}\binom{5}{k}\binom{3}{1}^{k}}{\binom{47}{5}} \approx 0.2588$
$\Rightarrow \mathbb{P}($ both hands have at least one pair $) \approx 0.2446$

Problem 5: By independent, $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
And disjoint means $A \cap B=\emptyset$, so $\mathbb{P}(A \cap B)=0$.
Thus, $\mathbb{P}(A) \mathbb{P}(B)=0$, which indicates at least one of $\mathbb{P}(A), \mathbb{P}(B)$ must be 0 .

