EECS105 Midterm 1	Name_	 ,	 ***********	
2/17/12	SID			

1	 /20
2	/16
3	/24
4	 /20
Total	/80

 \mathcal{L} 1. You have a silicon PN junction diode with $N_D=10^{19}$ cm⁻³ and $N_A=10^{16}$ cm⁻³

a. What is the built-in potential of the junction, V_0 ?

4 b. At room temperature, what are the n and p concentrations on each side of the unbiased junction?

$$\begin{bmatrix} n_{n} = 10^{19} \\ p_{n} = 10 \end{bmatrix} \begin{bmatrix} n_{p} = 10^{44} \\ p_{p} = 10^{16} \end{bmatrix}$$

c. If the temperature changes, and n_i increases by a factor of 100, what are the new carrier concentrations?

$$n_n = 10^{19}$$
 $n_p = 10^{8}$
 $p_p = 10^{16}$

d. If you forward bias this diode, will the carriers in the depletion region be mostly n-type or p-type? Will the current be mostly due to drift or diffusion?

e. In reverse bias, will the depletion region extend mostly into the n-type region, mostly into the p-type region, or will it be roughly equal sized in both regions?

7 f. You have a reverse bias of 32V across the junction, and measure a capacitance of 2pF. What reverse bias should you apply to get 4pF? (accurate to 10%)

7 g. There is a huge charge carrier concentration gradient in an unbiased PN junction. Why don't the carriers diffuse to the other side?

4	a.	current of 10mA. What is a rough guess	at the current in	a single diode if y	ou apply -0.6V across it?
/	_	-IPA			ire sish but right answer
			3 W	rong answer	
4	b.	You wire two diodes in	parallel and ap	ply 0.6V across th	em. Estimate the current.
		20mA		not fording	
				not knowing	that two parallel diodes gin
4	c.	You wire 100 diodes in across the pair.	n parallel and dr	ive 10mA through	them. Estimate the voltage
		0.48V	-2 -2	not finding	the current per each diode (Ip=10MA/(00)
4	d.	You wire two diodes in current.	n series and app	ly 0.6V across the	series combo. Estimate the
		100nA	-2 -2	not finding	the current (onswer) the voltage UBE = 0.3V

2. You have a box full of identical ideal diodes. You apply 0.6V to one, and observe a

2 for expressions

3. For the circuit below, at room temperature find the input V*_B necessary to make $V_{C}^{*}=1V$ and find the operating point currents I_{B}^{*} , and I_{C}^{*} . Calculate the transconductance and output resistance, and calculate the DC gain, Av. Assume $I_S=10^{-12}$ A, $\beta=100$, and $V_A=100$ V. Answers should be accurate to 10%.

1	for corre	t
	plug-ins	3
Ļ,	for final	

$$V_{B}^{*} = 0.48 V$$
 $I_{C}^{*} = 100 \mu A$ $I_{B}^{*} = 1 \mu A$ or $480 \mu V$ or $0.1 \mu A$ or $106 \mu A$ $0.1 \mu A$ or $106 \mu A$ $0.1 \mu A$

$$V_{c} = I^{V}$$

$$I_{c} = \frac{2^{V} - V_{c}^{*}}{Rc} = \frac{I^{V}}{Iok}$$

$$= 0.1 \text{ mA}$$

$$V_{c}$$

$$V_{d}$$

$$V_$$

$$T_{c} = T_{s} \cdot exp \left(\frac{V_{BE}}{26mv} \right)$$
 $(x/o^{-4} + 10^{-12})$

$$g_m = (\frac{k_0 T/q}{J_c}) = (\frac{26mv - 1}{6.1mA}) = (260^2)^{-1}$$

$$V_{T} = \frac{B}{gm} = \frac{10^2}{26mV_{0,1MA}} = \frac{10^3}{26}$$

$$Ao = -gm \cdot (\Gamma_0 // R_c)$$

= $-gm \cdot R_c$
= $-260^{-1} \cdot 10^4$
= $\frac{10^4}{260}$

10:16

A)You have an NMOS transistor with $\mu_n C_{ox}$ (W/L)= $2mA/V^2$ and λ =0.1/V, and V_{TH}=0.5V. Carefully plot the drain current vs. drain voltage of the NMOS device for $V_{DS}\!\!=\!\!0$ to 10V and $V_{GS}\!\!=\!1.5$ volts.

 V_{DS} =0 to 10V and V_{GS} = 1.5 volts. B) on the same plot, plot the collector current of an NPN bipolar transistor at room temperature with V_A =100V, I_S =5x10⁻¹³ A, V_{BE} =0.6V, and $V_{CE,sat}$ =0.5V, for V_{CE} =0 to 10V. J4:5 X103

I labeled the axes for you.

Note: everyone knows roughly what these curves look like. You get points for showing me that you know *exactly* what it looks like. Be neat!