Problem 1. (34 points total)
For the direct central impact between A and B,
(14 points for $A-B$ impact)

$$
\begin{align*}
& m_{A}\left(v_{A}\right)_{1}+m_{B}\left(v_{B}\right)_{1}=m_{A}\left(v_{A}\right)_{2}+m_{B}\left(v_{B}\right)_{2} \\
\Rightarrow \quad & 2 m v+0=2 m\left(v_{A}\right)_{2}+m\left(v_{B}\right)_{2} \tag{1}
\end{align*}
$$

From the coefficient of restitution,

$$
\begin{equation*}
e=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{\left(v_{A}\right)_{1}-\left(v_{B}\right)_{1}}=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{v} \tag{2}
\end{equation*}
$$

Solve Eqs. (1) and (2) to obtain

$$
\begin{array}{ll}
\left(v_{A}\right)_{2}=\frac{v}{3}(2-e) \\
\left(v_{B}\right)_{2}=\frac{2 v}{3}(1+e)
\end{array} \quad \longrightarrow \quad \text { (3 points for answer) }
$$

From geometry,

$$
\sin \theta=r / 2 r \quad \Rightarrow \quad \theta=30^{\circ}
$$

For the oblique central impact between B and C,
(20 points for B - C impact)

$$
\begin{align*}
& m_{B}\left(v_{B}\right)_{2 n}+m_{C}\left(v_{C}\right)_{2 n}=m_{B}\left(v_{B}\right)_{3 n}+m_{C}\left(v_{C}\right)_{3 n} \\
\Rightarrow \quad & \left(v_{B}\right)_{2} \cos \theta+0=\left(v_{B}\right)_{3 n}+\left(v_{C}\right)_{3 n} \tag{3}
\end{align*}
$$

Along the n-direction,

$$
\begin{equation*}
e=\frac{\left(v_{C}\right)_{3 n}-\left(v_{B}\right)_{3 n}}{\left(v_{B}\right)_{2 n}-\left(v_{C}\right)_{2 n}}=\frac{\left(v_{C}\right)_{3 n}-\left(v_{B}\right)_{3 n}}{\left(v_{B}\right)_{2} \cos \theta} \tag{4}
\end{equation*}
$$

Solve Eqs. (3) and (4) to get

$$
\begin{aligned}
& \left(v_{B}\right)_{3 n}=\frac{1}{2}(1-e)\left(v_{B}\right)_{2} \cos \theta \\
& \left(v_{C}\right)_{3 n}=\frac{1}{2}(1+e)\left(v_{B}\right)_{2} \cos \theta
\end{aligned}
$$

No forces are generated along the t-direction, therefore

$$
\begin{array}{ll}
m_{B}\left(v_{B}\right)_{2 t}=m_{B}\left(v_{B}\right)_{3 t} \Rightarrow & \left(v_{B}\right)_{3 t}=-\left(v_{B}\right)_{2} \sin \theta \\
m_{C}\left(v_{C}\right)_{2 t}=m_{C}\left(v_{C}\right)_{3 t} \Rightarrow & \left(v_{C}\right)_{3 t}=0
\end{array}
$$

The speed of A after collision is $\left(v_{A}\right)_{2}$ obtained earlier while the speeds of B, C after collision are given by
(3 points for answer)

$$
\begin{aligned}
& \left(v_{B}\right)_{3}=\sqrt{\left(v_{B}\right)_{3 n}^{2}+\left(v_{B}\right)_{3 t}^{2}}=\frac{v(1+e) \sqrt{4+3(1-e)^{2}}}{6} \\
& \left(v_{C}\right)_{3}=\left(v_{C}\right)_{3 n}=\frac{v \sqrt{3}(1+e)^{2}}{6}
\end{aligned}
$$

(3 points for answer)

Problem 2. (33 points total)
(28 points for angular velocity of $C D$)
Attach an absolute $x y$-frame to O with the x-axis in a horizontal direction. Since A moves in a circle about O,

$$
\mathbf{v}_{A}=3 \omega_{A O} \cos 30^{\circ} \mathbf{i}-3 \omega_{A O} \sin 30^{\circ} \mathbf{j}=30 \cos 30^{\circ} \mathbf{i}-30 \sin 30^{\circ} \mathbf{j}
$$

Assume that $C D$ has a clockwise angular velocity, which implies that $\boldsymbol{\omega}_{C D}=-\omega_{C D} \mathbf{k}$. The velocity \mathbf{v}_{B} is perpendicular to $C B$ such that

$$
\mathbf{v}_{B}=4 \omega_{C D} \mathbf{i}
$$

Since B moves in a circle relative to $A, \mathbf{v}_{B / A}$ is perpendicular to $A B$ and therefore it acts along $C B$ when $A B$ is horizontal and $C B$ is vertical.

$$
\mathbf{v}_{B / A}=v_{B / A} \mathbf{j}
$$

For points A, B on link $A B$,

$$
\begin{array}{ll}
& \mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B / A} \\
\Rightarrow & 4 \omega_{C D} \mathbf{i}=30 \cos 30^{\circ} \mathbf{i}-30 \sin 30^{\circ} \mathbf{j}+v_{B / A} \mathbf{j} \\
\Rightarrow \quad & 4 \omega_{C D}=30 \cos 30^{\circ} \\
\Rightarrow \quad & \omega_{C D}=6.50 \mathrm{rad} / \mathrm{sec}
\end{array}
$$

The velocity \mathbf{v}_{D} is perpendicular to the arm $C D$ such that (5 points for velocity of D)

$$
\mathbf{v}_{D}=6 \omega_{C D} \mathbf{i}=38.97 \mathbf{i} \mathrm{in} / \mathrm{sec}
$$

Problem 3. (33 points total)
The rotation of the wheel and the motion of the center O are connected by

$$
\begin{array}{ll}
\omega=\frac{v_{O}}{r} & \text { (5 points for angular velocity) } \\
\alpha=\frac{\left(a_{O}\right)_{t}}{r} & \text { (5 points for angular acceleration) }
\end{array}
$$

Attach a translating $x y$-frame to O.

$$
\mathbf{a}_{o}=\left(\mathbf{a}_{O}\right)_{t}+\left(\mathbf{a}_{o}\right)_{n}=r \alpha \mathbf{i}+\frac{v_{O}^{2}}{R-r} \mathbf{j}=r \alpha \mathbf{i}+\frac{(r \omega)^{2}}{R-r} \mathbf{j}
$$

For A and O on the wheel,

$$
\begin{aligned}
& \mathbf{a}_{A}=\mathbf{a}_{O}+\boldsymbol{\omega}_{A O} \times\left(\boldsymbol{\omega}_{A O} \times \mathbf{r}_{A / O}\right)+\boldsymbol{\alpha}_{A O} \times \mathbf{r}_{A / O} \\
& =r \alpha \mathbf{i}+\frac{(r \omega)^{2}}{R-r} \mathbf{j}+(-\omega \mathbf{k}) \times[(-\omega \mathbf{k}) \times r \mathbf{j}]+(-\alpha \mathbf{k}) \times r \mathbf{j} \\
& =2 r \alpha \mathbf{i}+\frac{(2 r-R) r \omega^{2}}{R-r} \mathbf{j} \\
& \text { (5 points for answer) }
\end{aligned}
$$

